

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	django-hvad 0.5.0 documentation

Welcome to the Django hvad documentation!

About this project

django-hvad provides a high level API to maintain multilingual content in your
database using the Django ORM.

Before you dive into this

Please note that this documentation assumes that you are very familiar with
Django and Python, if you are not, please familiarize yourself with those first.

While django-hvad tries to be as simple to use as possible, it’s still
recommended that you only use it if you consider yourself to be very strong in
Python and Django.

Notes on Django versions

django-hvad is tested on the following configurations:

	Django 1.3.7, running Python 2.6 or 2.7.

	Django 1.4.15, running Python 2.6 or 2.7.

	Django 1.5.10, running Python 2.6, 2.7 or 3.3.

	Django 1.6.7, running Python 2.7 or 3.3.

	Django 1.7.0, running Python 2.7, 3.3 or 3.4.

Contents

	1. Installation

	2. Quickstart

	3. Models

	4. Queryset API

	5. Forms

	6. Admin

	7. Frequent Questions

	8. Release Notes

	9. Contact and support channels

	10. How to contribute

	11. Internal API Documentation
	General information on django-hvad internals

	hvad.admin

	hvad.descriptors

	hvad.exceptions

	hvad.fieldtranslator

	hvad.forms

	hvad.manager

	hvad.models

	hvad.utils

	12. Glossary

Indices and tables

	Index

	Module Index

	Search Page

	Glossary

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

1. Installation

1.1. Requirements

	Django [http://www.djangoproject.com] 1.3 or higher. Django 1.6 or higher is recommended.

	Python 2.6 or a higher release of Python 2.x or PyPy 1.5 or higher, Python 3.3 or higher.

	For Python 2.6 you need argparse [http://pypi.python.org/pypi/argparse]

1.2. Installation

Packaged version

This is the recommended way. Install django-hvad using pip [http://pypi.python.org/pypi/pip] by running:

pip install django-hvad

This will download the latest version from pypi [https://pypi.python.org/pypi/django-hvad] and install it.

Then add 'hvad' to your INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS], and proceed to
Quickstart.

Latest development version

If you need the latest features from a yet unreleased version, or just like
living on the edge, install django-hvad using pip [http://pypi.python.org/pypi/pip] by running:

pip install https://github.com/kristianoellegaard/django-hvad/tarball/master

This will download the development branch from github [https://github.com/kristianoellegaard/django-hvad] and install it.

Then add 'hvad' to your INSTALLED_APPS [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-INSTALLED_APPS], and proceed to
Quickstart.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

2. Quickstart

2.1. Define a multilingual model

Defining a multilingual model is very similar to defining a normal Django model,
with the difference that instead of subclassing Model [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model]
you have to subclass TranslatableModel and that all fields
which should be translatable have to be wrapped inside a
TranslatedFields.

Let’s write an easy model which describes Django applications with translatable
descriptions and information about who wrote the description:

from django.db import models
from hvad.models import TranslatableModel, TranslatedFields

class DjangoApplication(TranslatableModel):
 name = models.CharField(max_length=255, unique=True)
 author = models.CharField(max_length=255)

 translations = TranslatedFields(
 description = models.TextField(),
 description_author = models.CharField(max_length=255),
)

 def __unicode__(self):
 return self.name

The fields name and author will not get translated, the fields
description and description_author will.

2.2. Create a translated instance

Now that we have defined our model, let’s play around with it a bit. The
following code examples are taken from a Python shell.

Import our model:

>>> from myapp.models import DjangoApplication

Create an instance:

>>> hvad = DjangoApplication.objects.language('en').create(
 name='django-hvad', author='Jonas Obrist',
 description='A project to do multilingual models in Django',
 description_author='Jonas Obrist',
)
>>> hvad.name
'django-hvad'
>>> hvad.author
'Jonas Obrist'
>>> hvad.description
'A project to do multilingual models in Django'
>>> hvad.description_author
'Jonas Obrist'
>>> hvad.language_code
'en'
>>> hvad.save()

This is the most straightforward way to create a new instance with translated
fields. Doing it this way avoids the possibility of creating instances with
no translation at all, something one usually wants to avoid.

Once we have an instance, we can add new translations. Let’s add some French:

>>> hvad.translate('fr')
<DjangoApplication: django-hvad>
>>> hvad.name
'django-hvad'
>>> hvad.description
>>> hvad.description = 'Un projet pour gérer des modèles multilingues sous Django'
>>> hvad.description_author = 'Julien Hartmann'
>>> hvad.save()

Note

The translate() method creates a
brand new translation in the specified language. Please note
that it does not check the database, and that if the translation
already exists, a database integrity exception will be raised when saving.

2.3. Querying translatable models

Get the instance again and check that the fields are correct:

>>> obj = DjangoApplication.objects.language('en').get(name='django-hvad')
>>> obj.name
u'django-hvad'
>>> obj.author
u'Jonas Obrist'
>>> obj.description
u'A project to do multilingual models in Django'
>>> obj.description_author
u'Jonas Obrist'

We use language() to tell hvad we want
to use translated fields, in English. This is one of the three ways to query
a translatable model. It only ever considers instance that have a translation in
the specified language and match the filters in that language.

Other ways are untranslated(), which
uses a fallback algorithm to fetch the best translation within a list of languages,
and direct, vanilla use of the queryset, which does not know about translations or
translated fields at all.

Back to our instance, get it again, in other languages:

>>> obj = DjangoApplication.objects.language('fr').get(name='django-hvad')
>>> obj.description
u'Un projet pour gérer des modèles multilingues sous Django'
>>>
>>> DjangoApplication.objects.language('ja').filter(name='django-hvad')
[]

See how, in the second query, the fact that no translation exist in Japanese for
our object had it filtered out of the query.

Note

We set an explicit language when calling
language() because
we are in an interactive shell, which is not necessarily in English.
In your normal views, you can usually omit the language simply writing
MyModel.objects.language().get(...). This will use
get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language]
to get the language the environment is using at the time of the query.

Let’s get all Django applications which have a description written by
'Jonas Obrist' (in English, then in French):

>>> DjangoApplication.objects.language('en').filter(description_author='Jonas Obrist')
[<DjangoApplication: django-hvad>]
>>> DjangoApplication.objects.language('fr').filter(description_author='Jonas Obrist')
[]

Notice how the second query only considers French translations and returns an empty set.

Next, we will have a more detailed look at how to work with translatable models.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

3. Models

3.1. Defining models

Defining models with django-hvad is done by inheriting
TranslatableModel. Model definition works like in
regular Django, with the following additional features:

	Translatable fields can be defined on the model, by wrapping them in a
TranslatedFields instance, and assigning it to an
attribute on the model. That attribute will be used to access the
translations of your model directly. Behind the
scenes, it will be a reversed ForeignKey from the
Translations Model to your Shared Model.

	Custom settings can be set on the Translations Model by passing them
as a meta dictionnary to TranslatedFields.

A full example of a model with translations:

from django.db import models
from hvad.models import TranslatableModel, TranslatedFields

class TVSeries(TranslatableModel):
 distributor = models.CharField(max_length=255)

 translations = TranslatedFields(
 title = models.CharField(max_length=100),
 subtitle = models.CharField(max_length=255),
 released = models.DateTimeField(),
 meta={'unique_together': [('title', 'subtitle')]},
)

Note

The Meta [http://readthedocs.org/docs/django/en/latest/topics/db/models.html#meta-options] class of the model may not use the
translatable fields in those options:

	unique_together [http://readthedocs.org/docs/django/en/latest/ref/models/options.html#django.db.models.Options.unique_together]

	index_together [http://readthedocs.org/docs/django/en/latest/ref/models/options.html#django.db.models.Options.index_together]

	order_with_respect_to [http://readthedocs.org/docs/django/en/latest/ref/models/options.html#django.db.models.Options.order_with_respect_to]

3.2. New and Changed Methods

translate

	
translate(language_code)

	Prepares a new translation for this instance for the language specified.

Warning

This does not check if this language already exists in the
database and assumes it does not! If it already exists and you
try to save this instance, it will break!

Note

This method does not perform any database queries.

safe_translation_getter

	
safe_translation_getter(name, default=None)

	Returns the value of the field specified by name if it’s available on
this instance in the currently cached language. It does not try to get the
value from the database. Returns the value specified in default if no
translation was cached on this instance or the translation does not have a
value for this field.

This method is useful to safely get a value in methods such as
__unicode__() [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model.__unicode__].

Note

This method never performs any database queries.

Example usage:

class MyModel(TranslatableModel):
 translations = TranslatedFields(
 name = models.CharField(max_length=255)
)

 def __unicode__(self):
 return self.safe_translation_getter('name', 'MyMode: %s' % self.pk)

lazy_translation_getter

Changed in version 0.4.

	
lazy_translation_getter(name, default=None)

	Tries to get the value of the field specified by name using
safe_translation_getter(). If this fails, tries to load a translation
from the database. If none exists, returns the value specified in default.

This method is useful to get a value in methods such as
__unicode__() [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model.__unicode__].

Note

This method may perform a database query.

Example usage:

class MyModel(TranslatableModel):
 translations = TranslatedFields(
 name = models.CharField(max_length=255)
)

 def __unicode__(self):
 return self.lazy_translation_getter('name', 'MyMode: %s' % self.pk)

get_available_languages

	
get_available_languages()

	Returns a list of available language codes for this instance.

Note

This method runs a database query to fetch the available
languages, unless they were prefetched before (if the instance
was retrived with a call to prefetch_related('translations')).

save

	
save(force_insert=False, force_update=False, using=None)

	Overrides save() [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model.save].

This method runs an extra query when used to save the translation cached on
this instance, if any translation was cached.

3.3. Working with relations

Foreign keys pointing to a Translated Model always point to the
Shared Model. It is currently not possible to have a foreign key to a
Translations Model.

Please note that select_related() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.select_related] used on
a foreign key pointing to a Translated Model does not span to its
Translations Model and therefore accessing a translated field over the
relation causes an extra query.

If you wish to filter over a translated field over the relation from a
Normal Model you have to use
get_translation_aware_manager() to get a manager that allows
you to do so. That function takes your model class as argument and returns a
manager that works with translated fields on related models.

3.4. Advanced model definitions

Custom Managers and Querysets

Changed in version 0.5.

Vanilla managers [http://readthedocs.org/docs/django/en/latest/topics/db/managers.html#django.db.models.Manager], using vanilla
querysets [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet] can be used with translatable
models. However, they will not have access to translations or translatable fields.
Also, such a vanilla manager cannot server as a
default manager [http://readthedocs.org/docs/django/en/latest/topics/db/managers.html#id4] for the model. The default manager
must be translation aware.

To have full access to translations and translatable fields, custom managers
must inherit TranslationManager and custom querysets
must inherit either TranslationQueryset (enabling the
use of language()) or
FallbackQueryset (enabling the use of
use_fallbacks()). Both are described in the
dedicated section.

Once you have a custom queryset, you can use it to override the default ones
in your manager. This is where it is more complex than a regular manager:
TranslationManager uses three types of queryset, that
can be overriden independently:

	queryset_class must inherit
TranslationQueryset, and will be used for all queries
that call the language method.

	fallback_class must inherit
FallbackQueryset, and will be used for all queries
that call the untranslated
method.

	default_class may be any kind of
queryset (a TranslationQueryset, a FallbackQueryset of a plain
QuerySet [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet]). It will be used for all queries
that call neither language nor untranslated.

As a convenience, it is possible to override the queryset at manager instanciation,
avoiding the need to subclass the manager:

class TVSeriesTranslationQueryset(TranslationQueryset):
 def is_public_domain(self):
 threshold = datetime.now() - timedelta(days=365*70)
 return self.filter(released__gt=threshold)

class TVSeries(TranslatableModel):
 # ... (see full definition in previous example)
 objects = TranslationManager(queryset_class=TVSeriesTranslationQueryset)

More on querysets in the dedicated section.

Abstract Models

New in version 0.5.

Abstract models [http://readthedocs.org/docs/django/en/latest/topics/db/models.html#abstract-base-classes] can be used normally with hvad.
Untranslatable fields of the base models will remain untranslatable, while
translatable fields will be translatable on the concrete model as well:

class Place(TranslatableModel):
 coordinates = models.CharField(max_length=64)
 translations = TranslatedFields(
 name = models.CharField(max_length=255),
)
 class Meta:
 abstract = True

class Restaurant(Place):
 score = models.PositiveIntegerField()
 translations = TranslatedFields() # see note below

Note

The concrete models must have a TranslatedFields
instance as one of their attributes. This is required because this
attribute will be used to access the translations. It can be empty.

Proxy Models

New in version 0.4.

Proxy models [http://readthedocs.org/docs/django/en/latest/topics/db/models.html#proxy-models] can be used normally with hvad, with the
following restrictions:

	The __init__ method of the proxy model will not be called when it is
loaded from the database.

	As a result, the pre_init [http://readthedocs.org/docs/django/en/latest/ref/signals.html#django.db.models.signals.pre_init] and
post_init [http://readthedocs.org/docs/django/en/latest/ref/signals.html#django.db.models.signals.post_init] signals will not be sent for
the proxy model either.

The __init__ method and signals for the concrete model will still be called.

Next, we will detail the translation-aware querysets provided
by hvad.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

4. Queryset API

If you do not need to do fancy things such as custom querysets and are not in
the process of optimizing your queries yet, you can skip straight to next
section, to start using your translatable models to build some forms.

The queryset API is at the heart of hvad. It provides the ability to filter
on translatable fields and retrieve instances along with their translations.
They come in two flavors:

	The TranslationQueryset, for working with
instances translated in a specific language. It is the one used when calling
TranslationManager.language().

	The FallbackQueryset, for working with
all instances regardless of their language, and envetually loading translations
using a fallback algorithm. It is the one used when calling
TranslationManager.untranslated().

Note

It is possible to override the querysets used on
a model’s manager.

4.1. TranslationQueryset

The TranslationQueryset works on a translatable model, limiting itself to instances
that have a translation in a specific language. Its API is almost identical to
the regular Django QuerySet [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet].

New and Changed Methods

language

	
language(language_code=None)

	Sets the language for the queryset to either the given language code or
the currently active language if None. Language resolution will be deferred
until the query is evaluated.

This filters out all instances that are not translated in the given language,
and makes translatable fields available on the query results.

fallbacks

	
fallbacks(*languages)

	
New in version 0.6.

Enables fallbacks on the queryset. When the queryset has fallbacks enabled,
it will try to use fallback languages if an object has not translation
available in the language given to language().

The languages arguments specified the languages to use, priorized from
first to last. Special value None will be replaced with current language
as returned by get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language]. If called
with an empty argument list, the LANGUAGES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES] setting will be used.

If an instance has no translation in the
language()-specified language,
nor in any of the languages given to fallbacks(), an arbitrary
translation will be picked.

Passing the single value None alone will disable fallbacks.

Note

This feature requires Django 1.6 or newer.

delete_translations

	
delete_translations()

	Deletes all Translations Model instances in a queryset, without
deleting the Shared Model instances.

select_related

	
select_related(*fields)

	Inherited from select_related() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.select_related].

The select_related method also selects translations of translatable
models when it encounters some.

Note

select_related is not supported in combination with
language('all').

Not implemented public queryset methods

The following are methods on a queryset which are public APIs in Django, but are
not implemented (yet) in django-hvad:

	bulk_create()

	update_or_create()

	complex_filter()

	annotate()

	defer()

	only()

Using any of these methods will raise a NotImplementedError [http://docs.python.org/2.7/library/exceptions.html#exceptions.NotImplementedError].

Performance consideration

While most methods on TranslationQueryset run
using the same amount of queries as if they were untranslated, they all do
slightly more complex queries (one extra join).

The following methods run two queries where standard querysets would run one:

	create()

	update() (only if both translated and
untranslated fields are updated at once)

get_or_create() runs one query if the
object exists, three queries if the object does not exist in this language, but
in another language and four queries if the object does not exist at all. It
will return True for created if either the shared or translated instance
was created.

4.2. FallbackQueryset

This is a queryset returned by untranslated(),
which can be used both to get the untranslated parts of models only or to use
fallbacks for loading a translation based on a priority list of languages.
By default, only the untranslated parts of models are retrieved from
the database, and accessing translated field will trigger an additional query
for each instance.

Warning

You may not use any translated fields in any method on this
queryset class.

Warning

If you have a default ordering [http://readthedocs.org/docs/django/en/latest/ref/models/options.html#django.db.models.Options.ordering]
defined on your model and it includes any translated field, you
must specify an ordering on every query so as not to use the
translated fields specified by the default ordering.

New Methods

use_fallbacks

Changed in version 0.5.

	
use_fallbacks(*fallbacks)

	Returns a queryset which will use fallbacks to get the translated part of
the instances returned by this queryset. If fallbacks is given as a
tuple of language codes, it will try to get the translations in the order
specified, replacing the special None value with the current language at
query evaluation, as returned by get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language].
Otherwise the order of your LANGUAGES setting will be used, prepended with
current language.

Warning

Using fallbacks with a version of Django older than 1.6 will
cause a lot of queries! In the worst
case 1 + (n * x) with n being the amount of rows being fetched
and x the amount of languages given as fallbacks. Only ever use
this method when absolutely necessary and on a queryset with as
few results as possible.

Changed in version 0.5: Fallbacks were reworked, so that when running
on Django 1.6 or newer, only one query is needed.

Not implemented public queryset methods

The following are methods on a queryset which are public APIs in Django, but are
not implemented on fallback querysets.

	aggregate() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.aggregate]

	annotate() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.annotate]

	defer() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.defer]

	only() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.only]

Next, we will use our models and queries to build some forms.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

5. Forms

Although Django’s ModelForm [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#django.forms.ModelForm] can work with translatable
models, they will only know about untranslatable fields. Don’t worry though,
django-hvad’s got you covered with the following form types:

	TranslatableModelForm is the translation-enabled
counterpart to Django’s ModelForm [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#django.forms.ModelForm].

	Translatable formsets is the
translation-enabled counterpart to Django’s
model formsets [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#model-formsets], for editing several instances
at once.

	Translatable inline formsets is the
translation-enabled counterpart to Django’s
inline formsets [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#inline-formsets], for editing several instances
attached to another object.

	Translation formsets allows building a formset of
all the translations of a single instance for editing them all at once. For
instance, in a tabbed view.

5.1. TranslatableModelForm

TranslatableModelForms work like ModelForm [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#django.forms.ModelForm], but can
display and edit translatable fields as well. There use is very similar,
except the form must subclass TranslatableModelForm instead of
ModelForm [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#django.forms.ModelForm]:

class ArticleForm(TranslatableModelForm):
 # language = 'en' # See below
 class Meta:
 model = Article
 fields = ['pub_date', 'headline', 'content', 'reporter']

Notice the difference from Django's example [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#django.forms.ModelForm]?
There is none but for the parent class. This ArticleForm will allow editing
of one Article in one language, correctly introspecting the model to know
which fields are translatable.

The language the form uses is computed this way:

	if the form is given a model instance, it will use the language that instance
was loaded with.

	if this fails, it will look for a language attribute set on the form.

	if this fails, it will use the current language, as returned by
get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language]. If a request is being
processed, that will be the language of the request.

In all cases, any language_code field sent with form data will be ignored.
It is the reponsibility of calling code to ensure the data matches the language
of the form.

All features of Django’s form work as usual. Just be careful while overriding
the save() or
_post_clean() methods, as they are
crucial parts for the form to work.

5.2. TranslatableModelForm factory

Similar to Django’s ModelForm factory [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#modelforms-factory], hvad
eases the generation of uncustomized forms by providing a factory:

BookForm = translatable_modelform_factory('en', Book, fields=('author', 'title'))

The translation-aware version works exactly the same way as the original one,
except it takes the language the form should use as an additional argument.

5.3. TranslatableModel Formset

Similar to Django’s ModelFormset factory [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#model-formsets], hvad
provides a factory to create formsets of translatable models:

AuthorFormSet = translatable_modelformset_factory('en', Author)

It is also possible to override the queryset, the same way you would do it for
a regular formset. In fact, it is recommended, as the default will not prefetch
translations:

BookForm = translatable_modelformset_factory(
 'en', Book, fields=('author', 'title'),
 queryset=Book.objects.language().filter(name__startswith='O'),
)

Using language() ensures translations will
be loaded at once, and allows filtering on translated fields.

Note

To override the form by passing a form= argument to the factory,
the custom form must inherit TranslatableModelForm.

5.4. TranslatableModel Inline Formset

Similar to Django’s inline formset factory [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#inline-formsets], hvad
provides a factory to create inline formsets of translatable models:

BookFormSet = translatable_inlineformset_factory('en', Author, Book)

Note

To override the form by passing a form= argument to the factory,
the custom form must inherit TranslatableModelForm.

5.5. Translations Formset

Basic usage

The translation formset allows one to edit all translations of an
instance at once: adding new translations, updating and deleting existing ones.
It works mostly like regular BaseInlineFormSet [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#django.forms.models.BaseInlineFormSet]
except it automatically sets itself up for working with the Translations Model
of given TranslatableModel.

Example:

from django.forms.models import modelform_factory
from hvad.forms import translationformset_factory
from myapp.models import MyTranslatableModel

MyUntranslatableFieldsForm = modelform_factory(MyTranslatableModel)
MyTranslationsFormSet = translationformset_factory(MyTranslatableModel)

Now, MyUntranslatableFieldsForm is a regular, Django, translation-unaware
form class, showing only the untranslatable fields of an instance, while
MyTranslationsFormSet is a formset class showing only the translatable
fields of an instance, with one form for each available translation (plus any
additional forms requested with the extra parameter - see
modelform_factory() [http://readthedocs.org/docs/django/en/latest/ref/forms/models.html#django.forms.models.modelform_factory]).

Custom Translation Form

As with regular formsets, one may specify a custom form class to use. For instance:

class MyTranslationForm(ModelForm):
 class Meta:
 fields = ['title', 'content', 'slug']

MyTranslationFormSet = translationformset_factory(
 MyTranslatableModel, form=MyTranslationForm, extra=1
)

Note

The translations formset will use a language_code field if defined,
or create one automatically if none was defined.

One may also specify a custom formset class to use. It must inherit
BaseTranslationFormSet.

Wrapping it up: editing the whole instance

A common requirement, being able to edit the whole instance at once, can be
achieved by combining a regular, translation unaware ModelForm [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#django.forms.ModelForm]
with a translation formset in the same view. It works the way one would expect it to.
The following code samples highlight a few gotchas.

Creating the form and formset for the object:

FormClass = modelform_factory(MyTranslatableModel)
TranslationsFormSetClass = translationformset_factory(MyTranslatablemodel)

self.object = self.get_object()
form = FormClass(instance=self.object, data=request.POST)
formset = TranslationsFormSetClass(instance=self.object, data=request.POST)

Checking submitted form validity:

if form.is_valid() and formset.is_valid():
 form.save(commit=False)
 formset.save()
 self.object.save_m2m() # only if our model has m2m relationships
 return HttpResponseRedirect('/confirm_edit_success.html')

Note

When saving the formset, translations will be recombined with the main
object, and saved as a whole. This allows custom
save() [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model.save] defined on the model to be called
properly and signal handlers to be fed a full instance. For this
reason, we use commit=False while saving the form, avoiding a
useless query.

Warning

You must ensure that form.instance and formset.instance
reference the same object, so that saving the formset does not
overwrite the values computed by form.

A common way to use this view would be to render the form on top, with
the formset below it, using JavaScript to show each translation in a tab.

Next, we will take a look at the administration panel.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

6. Admin

When you want to use a Translated Model in the Django admin, you have
to subclass hvad.admin.TranslatableAdmin instead of
django.contrib.admin.ModelAdmin [http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin].

6.1. New methods

all_translations

	
all_translations(obj)

	A method that can be used in list_display and shows a list of
languages in which this object is available. Entries are linked to their
corresponding admin page.

Note

You should add prefetch_related(‘translations’) to your queryset
if you use this in list_display [http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.list_display],
else one query will be run for every item in the list.

6.2. ModelAdmin APIs you should not change on TranslatableAdmin

Some public APIs on django.contrib.admin.ModelAdmin [http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin] are crucial for
hvad.admin.TranslatableAdmin to work and should not be altered in
subclasses. Only do so if you have a good understanding of what the API you
want to change does.

The list of APIs you should not alter is:

change_form_template

If you wish to alter the template used to render your admin, use the implicit
template fallback in the Django admin by creating a template named
admin/<appname>/<modelname>/change_form.html or
admin/<appname>/change_form.html. The template used in django-hvad will
automatically extend that template if it’s available.

get_form

Use hvad.admin.TranslatableAdmin.form instead, but please see the
notes regarding Forms in admin.

render_change_form

The only thing safe to alter in this method in subclasses is the context, but
make sure you call this method on the superclass too. There’s three variable
names in the context you should not alter:

	title

	language_tabs

	base_template

get_object

Just don’t try to change this.

queryset

If you alter this method, make sure to call it on the superclass too to prevent
duplicate objects to show up in the changelist or change views raising
django.core.exceptions.MultipleObjectsReturned [http://readthedocs.org/docs/django/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned] errors.

6.3. Forms in admin

If you want to alter the form to be used on your
hvad.admin.TranslatableAdmin subclass, it must inherit from
hvad.forms.TranslatableModelForm. For more informations, see
Forms.

6.4. ModelAdmin APIs not available on TranslatableAdmin

A list of public APIs on django.contrib.admin.ModelAdmin [http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin] which are not
implemented on hvad.admin.TranslatableAdmin for handling translatable
fields, these APIs should continue to work as usual for non-translatable
fields.

	actions [1]

	date_hierarchy [1]

	fieldsets [1]

	list_display [1]

	list_display_links [1]

	list_filter [1]

	list_select_related [1]

	list_ediable [1]

	prepopulated_fields [1]

	search_fields [1]

Footnotes

	[1]	(1, 2, 3, 4, 5, 6, 7, 8, 9, 10) This API can only be used with Shared Fields.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

7. Frequent Questions

	How do I get the right language from the request?

	How about multilingual URI?

	How do I use hvad with MPTT?

	How do I separate translatable fields in admin?

7.1. How do I get the right language from the request?

In most cases, you will be using language() with no
arguments in your views and forms. When used with no arguments, it defaults
to using the current language, as returned by Django’s
get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language].

Therefore, having hvad use the right language is mostly a matter of having
Django setting it right. Fortunately, Django provide the tools to do this,
in the form of the LocaleMiddleware [http://readthedocs.org/docs/django/en/latest/ref/middleware.html#django.middleware.locale.LocaleMiddleware]. Here is
a short guide to making it work.

First, the middleware must be enabled. This is done by adding
'django.middleware.locale.LocaleMiddleware' to MIDDLEWARE_CLASSES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-MIDDLEWARE_CLASSES]
in you settings file.

	It must come after SessionMiddleware [http://readthedocs.org/docs/django/en/latest/ref/middleware.html#django.contrib.sessions.middleware.SessionMiddleware].

	If you use the CacheMiddleware, then the LocaleMiddleware must come after
that too.

	Right after those, as close to the top as possible, should the LocaleMiddleware
come:

MIDDLEWARE_CLASSES = (
 'django.middleware.cache.UpdateCacheMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.locale.LocaleMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.cache.FetchFromCacheMiddleware',
)

Now, the middleware will try to determine the user’s language preference. There is
a detailed explanation of how it proceeds in
Django documentation [http://readthedocs.org/docs/django/en/latest/topics/i18n/translation.html#how-django-discovers-language-preference].

Hvad will happily follow the language discovered by the middleware. Although this
will usually be enough, you may sometimes want to force the language. Either
on a specific request by explicitly passing a language code to
language(), or by changing the current language. The
later is done through activate() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.activate].

7.2. How about multilingual URI?

We will assume the URI we want to be multilingual are made of two kind of components:
static components, and dynamic components. We want to translate both kind:

	Static components, through ugettext_lazy() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.ugettext_lazy].

	Dynamic components, from our translatable models.

Static components

This is thoroughly documented in Django’s
URL i18n documentation [http://readthedocs.org/docs/django/en/latest/topics/i18n/translation.html#url-internationalization] and does not actually
involve hvad, so this will be a short guide. It requires the
LocaleMiddleware [http://readthedocs.org/docs/django/en/latest/ref/middleware.html#django.middleware.locale.LocaleMiddleware] to be properly
configured, so please do that first.

With this middleware active, each request will set a current language before
looking up the URI in your urlconf.py. This makes it possible to use
ugettext_lazy() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.ugettext_lazy] in your patterns, like this:

from django.conf.urls import url
from django.utils.translation import ugettext_lazy as _

urlpatterns = [
 url(_(r'^en/news/(?P<year>[0-9]{4})/(?P<month>[0-9]{2})/(?P<slug>.*)'),
 views.NewsView, name='news-detail'),
]

The pattern would then appear in the list of translatable string, making it
possible to add, for instance, a translation that would read
^fr/actualites/(?P<year>[0-9]{4})/(?P<month>[0-9]{2})/(?P<slug>.*)

Note

Notice the language code at the beginning. Although not required,
prefixing your URI with it makes the life much easier to the
LocaleMiddleware [http://readthedocs.org/docs/django/en/latest/ref/middleware.html#django.middleware.locale.LocaleMiddleware].

Dynamic components

We translated the static parts of the URI with Django mechanics. What now?
Well, if we touch nothing, everything will work fine: the language of the user
will be used for URI resolution, and then hvad’s language()
will follow the same. Database queries will filter on the user’s language
by default, and your view will 404 if nothing is found in that language.

Now, in some instances, the language might not be known. Because your URI does
not include a language code, or because you want to find objects regardless
of the user’s language. Maybe based on a translatable slug. This can be done
by querying with language('all'):

from django.views.generic.base import TemplateView

class NewsView(TemplateView):
 def get(self, request, *args, **kwargs):
 slug = kwargs['slug']
 obj = News.objects.language('all').get(published=True, slug=slug)

 context = self.get_context_data(news=obj, language=obj.language_code)
 return self.render_to_response(context)

This view will find the news given its slug, regardless of which language it
is in. It will display it in the language it is found with. It would be possible
to force it to be in the user’s preferred language by adding another query:

obj = News.objects.language('all').get(published=True, slug=slug)
try:
 # Try to replace obj with a version in current user's language
 obj = News.objects.language().get(pk=obj.pk)
except News.DoesNotExist:
 # No translation for user's language, stick with that of the slug
 pass

Note

Note those examples assume slugs are unique amongst all news of all
languages.

7.3. How do I use hvad with MPTT?

Warning

Since version 0.5, hvad no longer uses a custom metaclass, making this
solution unneeded. Although it will not break the way it is written
here, it becomes a verbose no-op and should be removed.

You might want to keep the manager subclassing at the end though.

The mptt [https://github.com/django-mptt/django-mptt/] application implements Modified Preorder Tree Traversal
for Django models. If you have any model in your project that is organized
in a hierarchy of items, you should be using it.

However, this code will break mysteriously if you are not familiar with python
metaclasses:

class Folder(MPTTModel, TranslatableModel):
 parent = TreeForeignKey('self', null=True, blank=True, related_name='children')
 order = models.PositiveIntegerField()
 translations = TranslatedFields(
 name = models.CharField(max_length=50)
)

 class MPTTMeta:
 order_insertion_by = ['order']

This will result in the following exception being thrown:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: metaclass conflict: the metaclass of a derived class must be a (non-strict) subclass of the metaclasses of all its bases

This is because both MPTTModel and TranslatableModel
use metaclasses and Python is confused: which should it use for the Folder model?
We need to create one by ourselves, like this:

class FolderBase(TranslatableModelBase, MPTTModelBase):
 pass

class Folder(MPTTModel, TranslatableModel):
 __metaclass__ = FolderBase
 # ...

Note

If you have multiple levels of inheritance, you have to specify the
metaclass for each class.

While you are there, it is very likely you will want to use the features of
the MPTT manager as well. Doing so is relatively straightforward:

class FolderManager(TranslationManager, MPTTManager):
 use_for_related_fields = True

class Folder(MPTTModel, TranslatableModel):
 # ...
 objects = FolderManager()

The same principle would work with a custom queryset too, but MPTT does not
define one.

7.4. How do I separate translatable fields in admin?

This comes froms #68 [https://github.com/KristianOellegaard/django-hvad/issues/68].

We need to separate the fields in fieldsets. Unfortunately, technical
restrictions on Django < 1.6 make support for translated fields directly
on ModelAdmin difficult. Therefore, it must be worked around by defining a
custom get_fieldsets() [http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.get_fieldsets] as such:

class MyModelAdmin(TranslatableAdmin):
 # ... other admin stuff
 def get_fieldsets(self, request, obj=None):
 return (
 (_('Common fields'), {
 'fields': ('owner', 'is_published',),
 }),
 (_('Translated fields'), {
 'fields': ('name', 'slug', 'description',),
 }),
)

The model admin will then be generated with two fieldsets, one for common fields
and one for translated fields. At the point though, language tabs still appear
at the top, with both fieldsets beneath. This can be changed by providing a
custom template for rendering the form. This is a 2-step process. First, we
specify a custom template on the admin:

class MyModelAdmin(TranslatableAdmin):
 # ... ohter admin stuff
 change_form_template = 'myapp/change_form.html'

Then we create the template, by extending the base admin change form. Only, we
place the language tabs where we want them to be:

{% extends "admin/change_form.html" %}

{% block field_sets %}
 {% for fieldset in adminform %}
 {% include "admin/includes/fieldset.html" %}
 {% if forloop.first %}
 {% include "admin/hvad/includes/translation_tabs.html" %}
 {% endif %}
 {% endfor %}
{% endblock %}

In that example, the language tabs will end up in between the first and second
fieldsets. We are mostly done, all we miss is some CSS rules to have the tabs
look right. We may simply copy-paste the extrahead block straight from
hvad/templates/admin/hvad/change_form.html.

Note

Remember that language tabs are links to other pages. This means that
clicking them without saving the form will not save anything, not even
common fields. Basically, a new, fresh form will be built from DB
values. If adding new object, common fields will be blanked as well.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

8. Release Notes

8.1. 0.6.0 - upcoming release

Note

This version is being developed. If you feel like helping, or want the
very latest feature, you can install it from the github repository [https://github.com/KristianOellegaard/django-hvad].
Otherwise, please get a packaged release [https://pypi.python.org/pypi/django-hvad] instead.

Python and Django versions supported:

	Django 1.3 is no longer supported.

	Python 2.6 is no longer supported. Though it is likely to work for the time
being, it has been dropped from the tested setups.

New features:

	TranslationQueryset now has a
fallbacks() method when running on
Django 1.6 or newer, allowing the queryset to use fallback languages while
retaining all its normal functionalities – #184 [https://github.com/KristianOellegaard/django-hvad/issues/184].

Fixes:

	Ecountering a regular (un-translatable) model in a deep select_related does
not break anymore. — #206 [https://github.com/KristianOellegaard/django-hvad/issues/206].

	Language tabs URI are now correctly generated when changelist filters are used.
— #203 [https://github.com/KristianOellegaard/django-hvad/issues/203].

	Admin language tab selection is no longer lost when change filters are active.
— #202 [https://github.com/KristianOellegaard/django-hvad/issues/202].

8.2. 0.5.0 - current release

Released on September 11, 2014

Python and Django versions supported:

	This version will be the last to support Django 1.3.

	This version will be the last to support Python 2.6. Though it may
still work for the time being, it will be removed from the tested setups.

New features:

	New translationformset_factory and its companion
BaseTranslationFormSet allow building a formset to work
on an instance’s translations. Please have at look at its detailed
documentation – #157 [https://github.com/KristianOellegaard/django-hvad/issues/157].

	Method language() now accepts the
special value 'all', allowing the query to consider all translations – #181 [https://github.com/KristianOellegaard/django-hvad/issues/181].

	Django 1.6+’s new datetimes() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.datetimes] method is
now available on TranslationQueryset too – #175 [https://github.com/KristianOellegaard/django-hvad/issues/175].

	Django 1.6+’s new earliest() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.earliest] method is
now available on TranslationQueryset.

	Calls to language(), passing None
to use the current language now defers language resolution until the query is
evaluated. It can now be used in form definitions directly, for instance for
passing a custom queryset to ModelChoiceField [http://readthedocs.org/docs/django/en/latest/ref/forms/fields.html#django.forms.ModelChoiceField] – #171 [https://github.com/KristianOellegaard/django-hvad/issues/171].

	Similarly, use_fallbacks() can now be
passed None as one of the fallbacks, and it will be replaced with current
language at query evaluation time.

	All queryset classes used by TranslationManager can now
be customized thanks to the new fallback_class
and default_class attributes.

	Abstract models are now supported. The concrete class must still declare a
TranslatedFields instance, but it can be empty – #180 [https://github.com/KristianOellegaard/django-hvad/issues/180].

	Django-hvad messages are now available in Italian – #178 [https://github.com/KristianOellegaard/django-hvad/issues/178].

	The Meta.ordering [http://readthedocs.org/docs/django/en/latest/ref/models/options.html#django.db.models.Options.ordering] model setting
is now supported on translatable models. It accepts both translated and shared
fields – #185 [https://github.com/KristianOellegaard/django-hvad/issues/185], #12 [https://github.com/KristianOellegaard/django-hvad/issues/12].

	The select_related() method is no longer
limited to 1 level depth – #192 [https://github.com/KristianOellegaard/django-hvad/issues/192].

	The select_related() method semantics
is now consistent with that of regular querysets. It supports passing None
to clear the list and mutiple calls mimic Django behavior. That is: cumulative
starting from Django 1.7 and substitutive before – #192 [https://github.com/KristianOellegaard/django-hvad/issues/192].

Deprecation list:

	The deprecated nani module was removed.

	Method using_translations() is now deprecated.
It can be safely replaced by language()
with no arguments.

	Setting NANI_TABLE_NAME_SEPARATOR was renamed to HVAD_TABLE_NAME_SEPARATOR.
Using the old name will still work for now, but issue a deprecation warning,
and get removed in next version.

	CSS class nani-language-tabs in admin templates was renamed to
hvad-language-tabs. Entities will bear both classes until next version.

	Private _real_manager and _fallback_manager attributes of
TranslationQueryset have been removed as the indirection
served no real purpose.

	The TranslationFallbackManager is deprecated and will
be removed in next release. Please use manager’s
untranslated() method instead.

	The TranslatableModelBase metaclass is no longer
necessary and will be removed in next release. hvad no longer triggers metaclass
conflicts and TranslatableModelBase can be safely dropped – #188 [https://github.com/KristianOellegaard/django-hvad/issues/188].

	Overriding the language in QuerySet.get() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.get]
and QuerySet.filter() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.filter] is now
deprecated. Either use the language()
method to set the correct language, or specify
language('all') to filter
manually through get and filter – #182 [https://github.com/KristianOellegaard/django-hvad/issues/182].

Fixes:

	Method latest() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.latest] now works when passed
no field name, properly getting the field name from the model’s
Meta.get_latest_by [http://readthedocs.org/docs/django/en/latest/ref/models/options.html#django.db.models.Options.get_latest_by] option.

	FallbackQueryset now leverages the better control on
queries allowed in Django 1.6 and newer to use only one query to resolve
fallbacks. Old behavior can be forced by adding HVAD_LEGACY_FALLBACKS = True
to your settings.

	Assigning value to translatable foreign keys through its _id field no
longer results in assigned value being ignored – #193 [https://github.com/KristianOellegaard/django-hvad/issues/193].

	Tests were refactored to fully support PostgreSQL – #194 [https://github.com/KristianOellegaard/django-hvad/issues/194]

8.3. 0.4.1

Released on June 1, 2014

Fixes:

	Translations no longer remain in database when deleted depending on
the query that deleted them – #183 [https://github.com/KristianOellegaard/django-hvad/issues/183].

	get_available_languages() now
uses translations if they were prefetched with
prefetch_related() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.prefetch_related]. Especially, using
all_translations() in
list_display [http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.list_display] no longer results in one
query per item, as long as translations were prefetched –
#179 [https://github.com/KristianOellegaard/django-hvad/issues/179], #97 [https://github.com/KristianOellegaard/django-hvad/issues/97].

8.4. 0.4.0

Released on May 19, 2014

New Python and Django versions supported:

	django-hvad now supports Django 1.7 running on Python 2.7, 3.3 and 3.4.

	django-hvad now supports Django 1.6 running on Python 2.7 and 3.3.

New features:

	TranslationManager‘s queryset class can now be overriden by
setting its queryset_class attribute.

	Proxy models can be used with django-hvad. This is a new feature, please
use with caution and report any issue on github.

	TranslatableAdmin‘s list display now has direct links
to each available translation.

	Instance’s translated fields are now available to the model’s
save() [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model.save] method when saving a
TranslatableModelForm.

	Accessing a translated field on an untranslated instance will now raise an
AttributeError [http://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError] with a helpful message instead of letting the
exception bubble up from the ORM.

	Method in_bulk() is now available on
TranslationQueryset.

Deprecation list:

	Catching ObjectDoesNotExist [http://readthedocs.org/docs/django/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist] when accessing
a translated field on an instance is deprecated. In case no translation
is loaded and none exists in database for current language, an
AttributeError [http://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError] is raised instead. For the transition,
both are supported until next release.

Removal of the old 'nani' aliases was postponed until next release.

Fixes:

	Fixed an issue where TranslatableAdmin could overwrite the
wrong language while saving a form.

	lazy_translation_getter() now tries
translations in LANGUAGES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES] order once it has failed with current
language and site’s main LANGUAGE_CODE [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGE_CODE].

	No more deprecation warnings when importing only from hvad.

	TranslatableAdmin now generates relative URLs instead
of absolute ones, enabling it to work behind reverse proxies.

	django-hvad does not depend on the default manager being named
‘objects’ anymore.

	Q objects now work properly with TranslationQueryset.

8.5. 0.3

New Python and Django versions supported:

	django-hvad now supports Django 1.5 running on Python 2.6 and 2.6.

Deprecation list:

	Dropped support for django 1.2.

	In next release, the old ‘nani’ module will be removed.

8.6. 0.2

The package is now called ‘hvad’. Old imports should result in an import error.

Fixed django 1.4 support

Fixed a number of minor issues

8.7. 0.1.4 (Alpha)

Released on November 29, 2011

	Introduces lazy_translation_getter()

8.8. 0.1.3 (Alpha)

Released on November 8, 2011

	A new setting was introduced to configure the table name separator, NANI_TABLE_NAME_SEPARATOR.

Note

If you upgrade from an earlier version, you’ll have to rename your tables yourself (the general template is
appname_modelname_translation) or set NANI_TABLE_NAME_SEPARATOR to the empty string in your settings (which
was the implicit default until 0.1.0)

8.9. 0.0.4 (Alpha)

8.10. 0.0.3 (Alpha)

Released on May 26, 2011.

	Replaced our ghetto fallback querying code with a simplified version of the
logic used in Bert Constantins django-polymorphic [https://github.com/bconstantin/django_polymorphic], all credit for our now
better FallbackQueryset code goes to him.

	Replaced all JSON fixtures for testing with Python fixtures, to keep tests
maintainable.

	Nicer language tabs in admin thanks to the amazing help of Angelo Dini.

	Ability to delete translations from the admin.

	Changed hvad.admin.TranslatableAdmin.get_language_tabs signature.

	Removed tests from egg.

	Fixed some tests possibly leaking client state information.

	Fixed a critical bug in hvad.forms.TranslatableModelForm where attempting to
save a translated model with a relation (FK) would cause IntegrityErrors when
it’s a new instance.

	Fixed a critical bug in hvad.models.TranslatableModelBase where certain field
types on models would break the metaclass. (Many thanks to Kristian
Oellegaard for the fix)

	Fixed a bug that prevented abstract TranslatableModel subclasses with no
translated fields.

8.11. 0.0.2 (Alpha)

Released on May 16, 2011.

	Removed language code field from admin.

	Fixed admin ‘forgetting’ selected language when editing an instance in another
language than the UI language in admin.

8.12. 0.0.1 (Alpha)

Released on May 13, 2011.

	First release, for testing purposes only.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

9. Contact and support channels

	IRC: irc.freenode.net/#django-hvad

	Github: https://github.com/KristianOellegaard/django-hvad

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

10. How to contribute

10.1. Running the tests

Common Setup

	virtualenv env

	source env/bin/activate

	pip install django sphinx

Postgres Setup

Additional to the steps above, install psycopg2 using pip and have a
postgres server running that you have access to with a user that can create
databases.

Mysql Setup

Additional to the steps above, install mysql-python using pip and have a
mysql server running that you have access to with a user that can create
databases.

Run the test

	python runtests.py

Optionally, prefix it with a environment variable called DATBASE_URL, for
example for a Postgres server running on myserver.com on port 5432
with the user username and password password and database name hvad:

	DATABASE_URL=postgres://username:password@myserver.com:5432/hvad python runtests.py

10.2. Contributing Code

If you want to contribute code, one of the first things you should do is read
the Internal API Documentation. It was written for developers who want to
understand how things work.

Patches can be sent as pull requests on Github to
https://github.com/KristianOellegaard/django-hvad.

Code Style

The PEP 8 [http://www.python.org/dev/peps/pep-0008] coding guidelines should be followed when contributing code to this
project.

Patches must include unittests that fully cover the changes in the patch.

Patches must contain the necessary changes or additions to both the
internal and public documentation.

If you need help with any of the above, feel free to Contact and support channels us.

10.3. Contributing Documentation

If you wish to contribute documentation, be it for fixes of typos and grammar or
to cover the code you’ve written for your patch, or just generally improve our
documentation, please follow the following style guidelines:

	Documentation is written using reStructuredText [http://docutils.sourceforge.net/rst.html] and Sphinx [http://sphinx.pocoo.org].

	Text should be wrapped at 80 characters per line. Only exception are over-long
URLs that cannot fit on one line and code samples.

	The language does not have to be perfect, but please give your best.

	For section headlines, please use the following style:

	# with overline, for parts

	* with overline, for chapters

	=, for sections

	-, for subsections

	^, for subsubsections

	", for paragraphs

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

11. Internal API Documentation

11.1. About this part of the documentation

Warning

All APIs described in this part of the documentation which are not
mentioned in the public API documentation are internal and are
subject to change without prior notice.
This part of the documentation is for developers who wish to work
on django-hvad, not with it. It may also be useful to get a better
insight on how things work and may proof helpful during
troubleshooting.

11.2. Contents

This part of the documentation is grouped by file, not by topic.

	General information on django-hvad internals
	How it works

	A word on caching

	hvad.admin
	TranslatableAdmin

	hvad.descriptors
	BaseDescriptor

	TranslatedAttribute

	LanguageCodeAttribute

	hvad.exceptions

	hvad.fieldtranslator

	hvad.forms
	TranslatableModelFormMetaclass

	TranslatableModelForm

	BaseTranslationFormSet

	hvad.manager
	FieldTranslator

	ValuesMixin

	SkipMasterSelectMixin

	TranslationQueryset

	TranslationManager

	FallbackQueryset

	TranslationFallbackManager

	TranslationAwareQueryset

	TranslationAwareManager

	hvad.models
	TranslatedFields

	BaseTranslationModel

	TranslatableModelBase

	TranslatableModel

	hvad.utils

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

 	11. Internal API Documentation

General information on django-hvad internals

How it works

Model Definition

Function hvad.models.prepare_translatable_model() is invoked by Django
metaclass using class_prepared [http://readthedocs.org/docs/django/en/latest/ref/signals.html#django.db.models.signals.class_prepared] signal. It
scans all attributes on the model defined for instances of
hvad.models.TranslatedFields, and if it finds one, sets the respective
options onto meta.

TranslatedFields both creates the
Translations Model and makes a foreign key from that model to point to
the Shared Model which has the name of the attribute of the
TranslatedFields instance as related name.

In the database, two tables are created:

	The table for the Shared Model with the normal Django way of defining
the table name.

	The table for the Translations Model, which if not specified otherwise
in the options (meta) of the Translations Model will have the name of
the database table of the Shared Model suffixed by _translations
as database table name.

Queries

The main idea of django-hvad is that when you query the Shared Model
using the Django ORM, what actually happens behind the scenes (in the queryset)
is that it queries the Translations Model and selects the relation to
the Shared Model. This means that model instances can only be queried if
they have a translation in the language queried in, unless an alternative
manager is used, for example by using
untranslated().

Due to the way the Django ORM works, this approach does not seem to be possible
when querying from a Normal Model, even when using
hvad.utils.get_translation_aware_manager() and therefore in that case we
just add extra filters to limit the lookups to rows in the database where the
Translations Model row existist in a specific language, using
<translations_accessor>__language_code=<current_language>. This is
suboptimal since it means that we use two different ways to query translations
and should be changed if possible to use the same technique like when a
Translated Model is queried.

A word on caching

Throughout this documentation, caching of translations is mentioned a lot. By
this we don’t mean proper caching using the Django cache framework, but rather
caching the instance of the Translations Model on the instance of the
Shared Model for easier access. This is done by setting the instance of
the Translations Model on the attribute defined by the
translations_cache on the Shared Model‘s options (meta).

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

 	11. Internal API Documentation

hvad.admin

	
hvad.admin.translatable_modelform_factory(model, form=TranslatableModelForm, fields=None, exclude=None, formfield_callback=None)

	The same as django.forms.models.modelform_factory() [http://readthedocs.org/docs/django/en/latest/ref/forms/models.html#django.forms.models.modelform_factory] but uses type
instead of django.forms.models.ModelFormMetaclass to create the
form.

TranslatableAdmin

	
class hvad.admin.TranslatableAdmin

	A subclass of django.contrib.admin.ModelAdmin [http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin] to be used for
hvad.models.TranslatableModel subclasses.

	
query_language_key

	The GET parameter to be used to switch the language, defaults to
'language', which results in GET parameters like ?language=en.

	
form

	The form to be used for this admin class, defaults to
hvad.forms.TranslatableModelForm and if overwritten should
always be a subclass of that class.

	
change_form_template

	We use 'admin/hvad/change_form.html' here which extends the correct
template using the logic from django admin, see
get_change_form_base_template(). This attribute should never
change.

	
get_form(self, request, obj=None, **kwargs)

	Returns a form created by translatable_modelform_factory().

	
all_translations(self, obj)

	A helper method to be used in list_display [http://readthedocs.org/docs/django/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.list_display]
to show available languages.

	
render_change_form(self, request, context, add=False, change=False, form_url='', obj=None)

	Injects title, language_tabs and base_template into the
context before calling the render_change_form() method on the
super class.
title just appends the current language to the end of the existing
title in the context.
language_tabs is the return value of get_language_tabs(),
base_template is the return value of
get_change_form_base_template().

	
queryset(self, request)

	Calls untranslated()
on the queryset returned by the call to the super class and returns that
queryset. This allows showing all objects, even if they have no
translation in current language, at the cost of more database queries.

	
_language(self, request)

	Returns the currently active language by trying to get the value from
the GET parameters of the request using query_language_key or
if that’s not available, use
get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language].

	
get_language_tabs(self, request, available_languages)

	Returns a list of triples. The triple contains the URL for the change
view for that language, the verbose name of the language and whether
it’s the current language, available or empty. This is used in the
template to show the language tabs.

	
get_change_form_base_template(self)

	Returns the appropriate base template to be used for this model.
Tries the following templates:

	admin/<applabel>/<modelname>/change_form.html

	admin/<applabel>/change_form.html

	admin/change_form.html

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

 	11. Internal API Documentation

hvad.descriptors

BaseDescriptor

	
class hvad.descriptors.BaseDescriptor

	Base class for the descriptors, should not be used directly.

	
opts

	The options (meta) of the model.

	
translation(self, instance)

	Get the cached translation object on an instance. If no translation is
cached yet, use the get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language] function
to get the current language, load it from the database and cache it on the
instance.

If no translation is cached, and no translation exists for current language,
raise an AttributeError [http://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError].

TranslatedAttribute

	
class hvad.descriptors.TranslatedAttribute

	Standard descriptor for translated fields on the Shared Model.

	
name

	The name of this attribute

	
opts

	The options (meta) of the model.

	
__get__(self, instance, instance_type=None)

	Gets the attribute from the translation object using
BaseDescriptor.translation(). If no instance is given (used from
the model instead of an instance) it returns the field object itself,
allowing introspection of the model.

Starting from Django 1.7, calling getattr() [http://docs.python.org/2.7/library/functions.html#getattr] on a translated field
before the App Registry is initialized raises an
AttributeError [http://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError].

	
__set__(self, instance, value)

	Sets the value on the attribute on the translation object using
BaseDescriptor.translation() if an instance is given, if no
instance is given, raises an AttributeError [http://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError].

	
__delete__(self, instance)

	Deletes the attribute on the translation object using
BaseDescriptor.translation() if an instance is given, if no
instance is given, raises an AttributeError [http://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError].

LanguageCodeAttribute

	
class hvad.descriptors.LanguageCodeAttribute

	The language code descriptor is different than the other fields, since it’s
readonly. The getter is inherited from TranslatedAttribute.

	
__set__(self, instance, value)

	Raises an attribute error.

	
__delete__(self, instance)

	Raises an attribute error.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

 	11. Internal API Documentation

hvad.exceptions

	
exception hvad.exceptions.WrongManager

	Raised when trying to access the related manager of a foreign key pointing
from a normal model to a translated model using the standard manager instead
of one returned by hvad.utils.get_translation_aware_manager(). Used to
give developers an easier to understand exception than a
django.core.exceptions.FieldError [http://readthedocs.org/docs/django/en/latest/ref/exceptions.html#django.core.exceptions.FieldError]. This exception is raised by the
hvad.utils.SmartGetFieldByName which gets patched onto the options
(meta) of translated models.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

 	11. Internal API Documentation

hvad.fieldtranslator

	
hvad.fieldtranslator.TRANSLATIONS

	Constant to identify Shared Model classes.

	
hvad.fieldtranslator.TRANSLATED

	Constant to identify Translations Model classes.

	
hvad.fieldtranslator.NORMAL

	Constant to identify normal models.

	
hvad.fieldtranslator.MODEL_INFO

	Caches the model informations in a dictionary with the model class as keys
and the return value of _build_model_info() as values.

	
hvad.fieldtranslator._build_model_info(model)

	Builds the model information dictionary for a model. The dictionary holds
three keys: 'type', 'shared' and 'translated'. 'type' is one
of the constants TRANSLATIONS, TRANSLATED or NORMAL.
'shared' and 'translated' are a list of shared and translated
fieldnames. This method is used by get_model_info().

	
hvad.fieldtranslator.get_model_info(model)

	Returns the model information either from the MODEL_INFO cache or by
calling _build_model_info().

	
hvad.fieldtranslator._get_model_from_field(starting_model, fieldname)

	Get the model the field fieldname on starting_model is pointing to.
This function uses get_field_by_name() on the starting model’s options
(meta) to figure out what type of field it is and what the target model is.

	
hvad.fieldtranslator.translate(querykey, starting_model)

	Translates a querykey (eg 'myfield__someotherfield__contains') to be
language aware by spanning the translations relations wherever necessary. It
also figures out what extra filters to the Translations Model tables
are necessary. Returns the translated querykey and a list of language joins
which should be used to further filter the queryset with the current
language.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

 	11. Internal API Documentation

hvad.forms

TranslatableModelFormMetaclass

	
class hvad.forms.TranslatableModelFormMetaclass

	Metaclass of TranslatableModelForm.

	
__new__(cls, name, bases, attrs)

	The main thing happening in this metaclass is that the declared and base
fields on the form are built by calling
django.forms.models.fields_for_model() using the correct model
depending on whether the field is translated or not. This metaclass also
enforces the translations accessor and the master foreign key to be
excluded.

TranslatableModelForm

	
class hvad.forms.TranslatableModelForm(ModelForm)

	
	
__metaclass__

	TranslatableModelFormMetaclass

	
__init__(self, data=None, files=None, auto_id='id_%s', prefix=None, initial=None, error_class=ErrorList, label_suffix=':', empty_permitted=False, instance=None)

	If this class is initialized with an instance, it updates initial to
also contain the data from the Translations Model if it can be
found.

	
save(self, commit=True)

	Saves both the Shared Model and Translations Model and
returns a combined model. The Translations Model is either
altered if it already exists on the Shared Model for the current
language (which is fetched from the language_code field on the form
or the current active language) or newly created.

Note

Other than in a normal django.forms.ModelForm [http://readthedocs.org/docs/django/en/latest/topics/forms/modelforms.html#django.forms.ModelForm], this
method creates two queries instead of one.

	
_post_clean(self)

	Ensures the correct translation is loaded into self.instance.
It tries to load the language specified in the form’s language_code
field from the database, and calls
translate() if it does not exist yet.

BaseTranslationFormSet

	
class hvad.forms.BaseTranslationFormSet(BaseInlineFormSet)

	
	
instance

	An instance of a TranslatableModel that the formset
works on the translations of. Its untranslatable fields will be used while
validating and saving the translations.

	
order_translations(self, qs)

	Is given a queryset over the Translations Model, that it should
alter and return. This is used for adding order_by clause that will
define the order in which languages will show up in the formset.

Default implementation orders by language_code. If overriding this
method, the default implementation should not be called.

	
clean(self)

	Performs translation-specific cleaning of the form. Namely, it combines
each form’s translation with instance then calls
full_clean() [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model.full_clean] on the full object.

It also ensures the last translation of an object cannot be deleted
(unless adding a new translation at the same time).

	
_save_translation(self, form, commit=True)

	Saves one of the formset’s forms to the database. It is used by both
save_new() and save_existing(). It works by combining the
form’s translation with instance‘s untranslatable fields, then
saving the whole object, triggering any custom
save() [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model.save] method or related signal handlers.

	
save_new(self, form, commit=True)

	Saves a new translation. Called from
save().

	
save_existing(self, form, instance, commit=True)

	Saves an existing, updated translation. Called from
save().

	
add_fields(self, form, index)

	Adds a language_code field if it is not defined on the translation
form.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

 	11. Internal API Documentation

hvad.manager

This module is where most of the functionality is implemented.

	
hvad.manager.FALLBACK_LANGUAGES

	The default sequence for fallback languages, populates itself from
settings.LANGUAGES, could possibly become a setting on it’s own at some
point.

FieldTranslator

	
class hvad.manager.FieldTranslator

	The cache mentioned in this class is the instance of the class itself, since
it inherits dict.

Possibly this class is not feature complete since it does not care about
multi-relation queries. It should probably use
hvad.fieldtranslator.translate() after the first level if it hits
the Shared Model.てz

	
get(self, key)

	Returns the translated fieldname for key. If it’s already cached,
return it from the cache, otherwise call build()

	
build(self, key)

	Returns the key prefixed by 'master__' if it’s a shared field,
otherwise returns the key unchanged.

ValuesMixin

	
class hvad.manager.ValuesMixin

	A mixin class for ValuesQuerySet which
implements the functionality needed by TranslationQueryset.values()
and TranslationQueryset.values_list().

	
_strip_master(self, key)

	Strips 'master__' from the key if the key starts with that string.

	
iterator(self)

	Iterates over the rows from the superclass iterator and calls
_strip_master() on the key if the row is a dictionary.

SkipMasterSelectMixin

	
class hvad.manager.SkipMasterSelectMixin

	A mixin class for specialized querysets such as
DateQuerySet and
DateTimeQuerySet which forces
TranslationQueryset not to add the related lookup
on the master field. This is required as those specialized querysets
use DISTINCT, and added the related lookup brings along all fields on the
Shared Model, breaking the lookup.

TranslationQueryset

	
class hvad.manager.TranslationQueryset

	Any method on this queryset that returns a model instance or a queryset of
model instances actually returns a Translations Model which gets
combined to behave like a Shared Model. While this manager is on
the Shared Model, it is actually a manager for the
Translations Model since the model gets switched when this queryset
is instantiated from the TranslationManager.

	
override_classes

	A dictionary of django classes to hvad classes to mixin when
_clone() is called with an explicit klass argument.

	
_local_field_names

	A list of field names on the Shared Model.

	
_field_translator

	The cached field translator for this manager.

	
_language_code

	The language code of this queryset, or one of the following special values:

	None: get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language]
will be called to get the current language.

	'all': no language filtering will be applied, a copy of an instance
will be returned for every translation that matched the query.

	
_language_fallbacks

	A tuple of fallbacks used for this queryset, if fallbacks have been
activated by fallbacks(), or None otherwise.

A None value in the tuple will be replaced with current language
at query evaluation.

	
translations_manager

	The (real) manager of the Translations Model.

	
shared_model

	The Shared Model.

	
field_translator

	The field translator for this manager, sets _field_translator if
it’s None.

	
shared_local_field_names

	Returns a list of field names on the Shared Model, sets
_local_field_names if it’s None.

	
_translate_args_kwargs(self, *args, **kwargs)

	Translates args (Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] objects) and
kwargs (dictionary of query lookups and values) to be language aware, by
prefixing fields on the Shared Model with 'master__'. Uses
field_translator for the kwargs and _recurse_q() for the
args. Returns a tuple of translated args and translated kwargs.

	
_translate_fieldnames(self, fieldnames)

	Translate a list of fieldnames by prefixing fields on the
Shared Model with 'master__' using field_translator.
Returns a list of translated fieldnames.

	
_recurse_q(self, q)

	Recursively walks a Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] object and
translates it’s query lookups to be prefixed by 'master__' if they
access a field on Shared Model.

Every Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] object has an attribute
children which is either a list
of other Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] objects or a tuple
where the key is the query lookup.

This method returns a new Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q]
object.

	
_find_language_code(self, q)

	Searches a Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] object for
language code lookups. If it finds a child
Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] object that defines a language
code, it returns that language code if it’s not None. Used in
get() to ensure a language code is defined.

For more information about Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q]
objects, see _recurse_q().

Returns the language code if one was found or None.

	
_split_kwargs(self, **kwargs)

	Splits keyword arguments into two dictionaries holding the shared and
translated fields.

Returns a tuple of dictionaries of shared and translated fields.

	
_get_class(self, klass)

	Given a QuerySet [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet] class or subclass, it
checks if the class is a subclass of any class in
override_classes and if so, returns a new class which mixes
the initial class, the class from override_classes and
TranslationQueryset. Otherwise returns the class given.

	
_get_shared_queryset(self)

	Returns a clone of this queryset but for the shared model. Does so by
creating a QuerySet [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet] on shared_model
and filtering over this queryset. Returns a queryset for the Shared Model.

	
_add_language_filter(self)

	Apply the language filter to current query. Language is retrieved from
_language_code, or get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language] if
None. If fallbacks() have been set, apply the additional join as well.

Special value 'all' will prevent any language filter from being applied,
resulting in the query considering all translations, possibly returning
the same instance mutiple times if several of its translations match.
In that case, each instance will be combined
with one of the matching translations.

Applied filters include the base language filter on the language_code
field, as well as any related model translation set up by
select_related().

	
_add_select_related(self, language_code)

	
New in version 0.5.

Applies the related selections to current query. This includes the basic
selection of master, any relation specified through select_related()
and the translations of any translatable models it navigates through.

	
language(self, language_code=None)

	Specifies a language for this queryset. This sets the
_language_code, but no filter are actually applied until
_add_language_filter() is called. This allows for query-time
resolution of the None value. It is an error to call language()
multiple times on the same queryset.

The following special values are accepted:

	None, or no value: get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language]
will be called to get the current language.

	'all': no language filtering will be applied, a copy of an instance
will be returned for every translation that matched the query, each
copy being combined with one of the
matching translations.

Returns a queryset.

Note

Using language('all') and select_related() on the
same queryset is not supported and will raise a
NotImplementedError [http://docs.python.org/2.7/library/exceptions.html#exceptions.NotImplementedError].

	
fallbacks(self, *languages)

	
New in version 0.6.

Activates fallbacks for this queryset. This sets the
_language_fallbacks attribute, but does not apply any join
or filtering until _add_language_filter() is called. This allows
for query-time resolution of the None values in the list.

The following special cases are accepted:

	None as a single argument will disable fallbacks on the queryset.

	An empty argument list will use LANGUAGES [http://readthedocs.org/docs/django/en/latest/ref/settings.html#std:setting-LANGUAGES] setting as a
fallback list.

	A None value a language will be replaced by the current language
at query evalution time, by calling
get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language]

Returns a queryset.

Note

Using fallbacks and select_related() on the
same queryset is not supported and will raise a
NotImplementedError [http://docs.python.org/2.7/library/exceptions.html#exceptions.NotImplementedError].

Note

This feature requires Django 1.6 or newer.

	
create(self, **kwargs)

	Creates a new instance using the kwargs given. If _language_code
is not set and language_code is not in kwargs, it uses
get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language] to get the current
language and injects that into kwargs.

This causes two queries as opposed to the one by the normal queryset.

Returns the newly created (combined) instance.

Note

It is an error to call create with no language_code
on a queryset whose _language_code is 'all'.
Doing so will raise a ValueError [http://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError].

	
bulk_create(self, objs, batch_size=None)

	Not implemented yet and unlikely to be due to inherent limitations of
multi-table inserts.

	
update_or_create(self, defaults=None, **kwargs)

	Not implemented yet.

	
get(self, *args, **kwargs)

	Gets a single instance from this queryset using the args and kwargs
given. The args and kwargs are translated using
_translate_args_kwargs().

If a language code is given in the kwargs, it calls language()
using the language code provided. If none is given in kwargs, it uses
_find_language_code() on the
Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] objects given in args. If no
args were given or they don’t contain a language code, it searches the
django.db.models.sql.where.WhereNode objects on the current
queryset for language codes. If none was found, it will use the language
of this queryset from _language_code, or the current language
as returned by get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language] of that is None.

Returns a (combined) instance if one can be found for the filters given,
otherwise raises an appropriate exception depending on whether no or
multiple objects were found.

Warning

It is an error to pass language_code in a Q object if a
select_related() clause was enabled on this queryset.
Doing so will raise an AssertionError [http://docs.python.org/2.7/library/exceptions.html#exceptions.AssertionError].

	
get_or_create(self, **kwargs)

	Will try to fetch the translated instance for the kwargs given.

If it can’t find it, it will try to find a shared instance (using
_splitkwargs()). If it finds a shared instance, it will create
the translated instance. If it does not find a shared instance, it will
create both.

Returns a tuple of a (combined) instance and a boolean flag which is
False if it found the instance or True if it created either
the translated or both instances.

	
filter(self, *args, **kwargs)

	Translates args and kwargs using _translate_args_kwargs() and
calls the superclass using the new args and kwargs.

	
aggregate(self, *args, **kwargs)

	Loops through the passed aggregates and translates the fieldnames using
_translate_fieldnames() and calls the superclass

	
latest(self, field_name=None)

	Translates the fieldname (if given) using field_translator and
calls the superclass.

	
earliest(self, field_name=None)

	
New in version 0.4.

Translates the fieldname (if given) using field_translator and
calls the superclass.

Only defined if django version is 1.6 or newer.

	
in_bulk(self, id_list)

	
New in version 0.4.

Retrieves the objects, building a dict from iterator().

	
delete(self)

	Deletes the Shared Model using _get_shared_queryset().

	
delete_translations(self)

	Deletes the translations (and only the translations) by first
breaking their relation to the Shared Model and then calling the
delete method on the superclass. This uses two queries.

	
update(self, **kwargs)

	Updates this queryset using kwargs. Calls _split_kwargs() to get
two dictionaries holding only the shared or translated fields
respectively. If translated fields are given, calls the superclass with
the translated fields. If shared fields are given, uses
_get_shared_queryset() to update the shared fields.

If both shared and translated fields are updated, two queries are
executed, if only one of the two are given, one query is executed.

Returns the count of updated objects, which if both translated and
shared fields are given is the sum of the two update calls.

	
values(self, *fields)

	Translates fields using _translate_fieldnames() and calls the
superclass.

	
values_list(self, *fields, **kwargs)

	Translates fields using _translate_fieldnames() and calls the
superclass.

	
dates(self, field_name, kind, order='ASC')

	Translates fields using _translate_fieldnames() and calls the
superclass.

	
datetimes(self, field_name, *args, **kwargs)

	Translates fields using _translate_fieldnames() and calls the
superclass.

Only defined if django version is 1.6 or newer.

	
exclude(self, *args, **kwargs)

	Works like filter().

	
complex_filter(self, filter_obj)

	Not really implemented yet, but if filter_obj is an empty dictionary it
just returns this queryset, since this is required to get admin to work.

	
annotate(self, *args, **kwargs)

	Not implemented yet.

	
order_by(self, *field_names)

	Translates fields using _translate_fieldnames() and calls the
superclass.

	
reverse(self)

	Calls the superclass.

	
defer(self, *fields)

	Not implemented yet.

	
only(self, *fields)

	Not implemented yet.

	
_clone(self, klass=None, setup=False, **kwargs)

	Injects _local_field_names, _field_translator, _language_code,
and shared_model into kwargs. If a klass is
given, calls _get_class() to get a mixed class if necessary.

Calls the superclass with the new kwargs and klass.

	
iterator(self)

	Iterates using the iterator from the superclass, if the objects yielded
have a master, it yields a combined instance, otherwise the instance
itself to enable non-cascading deletion.

Interestingly, implementing the combination here also works for
get() and __getitem__(). This is because the former uses the
latter, which in turn fetches results from an iterator.

TranslationManager

	
class hvad.manager.TranslationManager

	Manager to be used on hvad.models.TranslatableModel.

	
translations_model

	The Translations Model for this manager.

	
queryset_class

	The QuerySet for this manager, used by the language() method.
Overwrite to use a custom queryset. Your custom
queryset class must inherit TranslationQueryset. Defaults to
TranslationQueryset.

	
fallback_class

	The QuerySet for this manager, used by the untranslated() method.
Overwrite to use a custom queryset. Defaults to FallbackQueryset.

	
default_class

	The QuerySet for this manager, used by the get_queryset() method
and generally any query that does not invoke either language() or
untranslated(). Overwrite to use a custom queryset. Defaults to
QuerySet [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet].

	
language(self, language_code=None)

	Instanciates a TranslationQueryset from queryset_class and calls
TranslationQueryset.language() on that queryset. This type of queryset
will filter by language, returning only objects that have a translation
in the specified language. Translated fields will be available on the
objects, in the specified language.

	
using_translations(self)

	Functionally equivalent to calling language() with no argument. This
method is deprecated and will be removed in the future.

	
untranslated(self)

	Returns an instance of FallbackQueryset for this manager, or any
custom queryset defined by fallback_class. This type of
queryset will load translations using fallbacks if current language is
not available. It can generate a lot a queries, use with caution.

	
get_queryset(self)

	Returns a vanilla, non-translating queryset for this manager. It uses
the default QuerySet [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet] or any custom
queryset defined by default_class.

Instances returned will not have translated fields, and attempts to access them
will result in an exception being raised. See language() and untranslated()
to access translated fields.

It is possible to override this behavior by setting default_class
to TranslationQueryset, FallbackQueryset or any queryset
that has a translation-aware implementation.

	
contribute_to_class(self, model, name)

	Contributes this manager onto the class.

FallbackQueryset

	
class hvad.manager.FallbackQueryset

	A queryset that can optionally use fallbacks and by default only fetches the
Shared Model.

	
_translation_fallbacks

	List of fallbacks to use (or None).

	
iterator(self)

	If _translation_fallbacks is set, it iterates using the
superclass and tries to get the translation using the order of
language codes defined in _translation_fallbacks. As soon as it
finds a translation for an object, it yields a combined object using
that translation. Otherwise yields an uncombined object. Due to the way
this works, it can cause a lot of queries and this should be
improved if possible.

If no fallbacks are given, it just iterates using the superclass.

	
use_fallbacks(self, *fallbacks)

	If this method gets called, iterator() will use the fallbacks
defined here. None value will be replaced with current language at
query evaluation, as returned by get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language].
If not fallbacks are given, FALLBACK_LANGUAGES will be used,
with current language prepended.

	
_clone(self, klass=None, setup=False, **kwargs)

	Injects translation_fallbacks into kwargs and calls the superclass.

TranslationFallbackManager

Warning

This class is deprecated and will be removed in next release.
Please use untranslated()
instead.

	
class hvad.manager.TranslationFallbackManager

	
	
use_fallbacks(self, *fallbacks)

	Proxies to FallbackQueryset.use_fallbacks() by calling
get_queryset() first.

	
get_queryset(self)

	Returns an instance of FallbackQueryset for this manager.

TranslationAwareQueryset

	
class hvad.manager.TranslationAwareQueryset

	
	
_language_code

	The language code of this queryset.

	
_translate_args_kwargs(self, *args, **kwargs)

	Calls language() using _language_code
as an argument.

Translates args and kwargs into translation aware args and
kwargs using hvad.fieldtranslator.translate() by iterating over
the kwargs dictionary and translating it’s keys and recursing over the
Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] objects in args using
_recurse_q().

Returns a triple of newargs, newkwargs and extra_filters where
newargs and newkwargs are the translated versions of args and
kwargs and extra_filters is a
Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] object to use to filter for the
current language.

	
_recurse_q(self, q)

	Recursively translate the keys in the
Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] object given using
hvad.fieldtranslator.translate(). For more information about
Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q], see
TranslationQueryset._recurse_q().

Returns a tuple of q and language_joins where q is the translated
Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] object and language_joins is
a list of extra language join filters to be applied using the current
language.

	
_translate_fieldnames(self, fields)

	Calls language() using _language_code
as an argument.

Translates the fieldnames given using
hvad.fieldtranslator.translate()

Returns a tuple of newfields and extra_filters where newfields is
a list of translated fieldnames and extra_filters is a
Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] object to be used to filter for
language joins.

	
language(self, language_code=None)

	Sets the _language_code attribute either to the language given
with language_code or by getting the current language from
get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language]. Unlike
TranslationQueryset.language(), this does not actually filter by
the language yet as this happens in _filter_extra().

	
get(self, *args, **kwargs)

	Gets a single object from this queryset by filtering by args and
kwargs, which are first translated using
_translate_args_kwargs(). Calls _filter_extra() with the
extra_filters returned by _translate_args_kwargs() to get a
queryset from the superclass and to call that queryset.

Returns an instance of the model of this queryset or raises an
appropriate exception when none or multiple objects were found.

	
filter(self, *args, **kwargs)

	Filters the queryset by args and kwargs by translating them using
_translate_args_kwargs() and calling _filter_extra() with
the extra_filters returned by _translate_args_kwargs().

	
aggregate(self, *args, **kwargs)

	Not implemented yet.

	
latest(self, field_name=None)

	If a fieldname is given, uses hvad.fieldtranslator.translate() to
translate that fieldname. Calls _filter_extra() with the
extra_filters returned by hvad.fieldtranslator.translate() if it
was used, otherwise with an empty
Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q] object.

	
in_bulk(self, id_list)

	Not implemented yet

	
values(self, *fields)

	Calls _translate_fieldnames() to translated the fields. Then
calls _filter_extra() with the extra_filters returned by
_translate_fieldnames().

	
values_list(self, *fields, **kwargs)

	Calls _translate_fieldnames() to translated the fields. Then
calls _filter_extra() with the extra_filters returned by
_translate_fieldnames().

	
dates(self, field_name, kind, order='ASC')

	Not implemented yet.

	
exclude(self, *args, **kwargs)

	Not implemented yet.

	
complex_filter(self, filter_obj)

	Not really implemented yet, but if filter_obj is an empty dictionary
it just returns this queryset, to make admin work.

	
annotate(self, *args, **kwargs)

	Not implemented yet.

	
order_by(self, *field_names)

	Calls _translate_fieldnames() to translated the fields. Then
calls _filter_extra() with the extra_filters returned by
_translate_fieldnames().

	
reverse(self)

	Not implemented yet.

	
defer(self, *fields)

	Not implemented yet.

	
only(self, *fields)

	Not implemented yet.

	
_clone(self, klass=None, setup=False, **kwargs)

	Injects _language_code into kwargs and calls the superclass.

	
_filter_extra(self, extra_filters)

	Filters this queryset by the Q [http://readthedocs.org/docs/django/en/latest/ref/models/queries.html#django.db.models.Q]
object provided in extra_filters and returns a queryset from the
superclass, so that the methods that call this method can directely
access methods on the superclass to reduce boilerplate code.

TranslationAwareManager

	
class hvad.manager.TranslationAwareManager

	
	
get_queryset(self)

	Returns an instance of TranslationAwareQueryset.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

 	11. Internal API Documentation

hvad.models

	
hvad.models.create_translations_model(model, related_name, meta, **fields)

	A model factory used to create the Translations Model. Makes sure
that the unique_together option on the options (meta) contain
('language_code', 'master') as they always have to be unique together.
Sets the master foreign key to model onto the
Translations Model as well as the language_code field, which is
a database indexed char field with a maximum of 15 characters.

Returns the new model.

	
hvad.models.contribute_translations(cls, rel)

	Gets called from prepare_translatable_model() to set the
descriptors of the fields on the Translations Model onto the
model.

	
hvad.models.prepare_translatable_model(sender)

	Gets called from Model [http://readthedocs.org/docs/django/en/latest/ref/models/instances.html#django.db.models.Model]‘s metaclass to
customize model creation. Performs checks, then contributes translations
and translation manager onto models that inherit
TranslatableModel.

TranslatedFields

	
class hvad.models.TranslatedFields

	A wrapper for the translated fields which is set onto
TranslatableModel subclasses to define what fields are translated.

Internally this is just used because Django calls the
contribute_to_class() method on all attributes of a model, if such a
method is available.

	
contribute_to_class(self, cls, name)

	Calls create_translations_model().

BaseTranslationModel

	
class hvad.models.BaseTranslationModel

	A baseclass for the models created by create_translations_model() to
distinguish Translations Model classes from other models. This model
class is abstract.

TranslatableModelBase

	
class hvad.models.TranslatableModelBase

	
Deprecated since version 0.5.

Metaclass of TranslatableModel. It is no longer used and should be
removed from metaclass inheritance tree in projects.

	
__new__(cls, name, bases, attrs)

	

TranslatableModel

	
class hvad.models.TranslatableModel

	A model which has translated fields on it. Must define one and exactly one
attribute which is an instance of TranslatedFields. This model is
abstract.

If initalized with data, it splits the shared and translated fields and
prepopulates both the Shared Model and the
Translations Model. If no language_code is given,
get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language] is used to get the language
for the Translations Model instance that gets initialized.

Note

When initializing a TranslatableModel, positional
arguments are only supported for the shared fields.

	
objects

	An instance of hvad.manager.TranslationManager.

	
_shared_field_names

	A list of field on the Shared Model.

	
_translated_field_names

	A list of field on the Translations Model.

	
classmethod save_translations(cls, instance, **kwargs)

	This classmethod is connected to the model’s post save signal from
prepare_translatable_model() and saves the cached translation if it’s
available.

	
translate(self, language_code)

	Initializes a new instance of the Translations Model (does not
check the database if one for the language given already exists) and
sets it as cached translation. Used by end users to translate instances
of a model.

	
safe_translation_getter(self, name, default=None)

	Helper method to safely get a field from the Translations Model.

	
lazy_translation_getter(self, name, default=None)

	Helper method to get the cached translation, and in the case the cache
for some reason doesnt exist, it gets it from the database.

	
get_available_languages(self)

	Returns a list of language codes in which this instance is available.

Extra information on _meta of Shared Models

The options (meta) on TranslatableModel subclasses have a few extra
attributes holding information about the translations.

translations_accessor

The name of the attribute that holds the TranslatedFields instance.

translations_model

The model class that holds the translations (Translations Model).

translations_cache

The name of the cache attribute on this model.

Extra information on _meta of Translations Models

The options (meta) on BaseTranslationModel subclasses have a few extra
attributes holding information about the translations.

shared_model

The model class that holds the shared fields (Shared Model).

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	django-hvad 0.5.0 documentation

 	11. Internal API Documentation

hvad.utils

	
hvad.utils.combine(trans, klass)

	Combines a Shared Model with a Translations Model by taking
the Translations Model and setting it onto the
Shared Model‘s translations cache.

klass is the Shared Model class. Thie argument is required as there
is no way to distinguish a translation of a proxy model from that of a concrete
model otherwise.

	
hvad.utils.get_cached_translation(instance)

	Returns the cached translation from an instance or None.
Encapsulates a getattr() [http://docs.python.org/2.7/library/functions.html#getattr] using the model’s translations_cache.

	
hvad.utils.get_translation(instance, language_code=None)

	Returns the translation for an instance, in the specified language. If given
language is None, uses get_language() [http://readthedocs.org/docs/django/en/latest/ref/utils.html#django.utils.translation.get_language] to get
current language.

Encapsulates a getattr() [http://docs.python.org/2.7/library/functions.html#getattr] using the model’s translations_accessor and
a call to its get() [http://readthedocs.org/docs/django/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.get] method using the
instance’s primary key and given language_code as filters.

	
hvad.utils.get_translation_aware_manager(model)

	Returns a manager for a normal model that is aware of translations and can
filter over translated fields on translated models related to this normal
model.

	
class hvad.utils.SmartGetFieldByName

	Smart version of the standard get_field_by_name() on the options
(meta) of Django models that raises a more useful exception when one tries
to access translated fields with the wrong manager.

	
__init__(self, real)

	

	
__call__(self, meta, name)

	

	
hvad.utils.permissive_field_by_name(self, name)

	Returns the field from the Shared Model or
Translations Model, if it is on either.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	django-hvad 0.5.0 documentation

12. Glossary

	Normal Model

	A Django model that does not have Translated Fields.

	Shared Fields

	A field which is not translated, thus shared between the languages.

	Shared Model

	The part of your model which holds the untranslated fields.
Internally this is a separated model to your Translations Model
as well as it’s own database table.

	Translated Fields

	A field which is translatable on a model.

	Translated Model

	A Django model that subclasses TranslatableModel.

	Translation Manager

	A subclass of TranslationManager, which replaces
the default Django manager on Translated Model, allowing access to
translated fields. It will use TranslationQueryset
internally, or a custom subclass if so configured.

	Translation-Aware Manager

	A Django manager that operates on untranslated models, yet is aware of
translated models it meets when crossing relations. It makes it possible
to filter untranslatable models against a translated field of a related
model.

	Translations Model

	The part of your model which holds the translated fields. Internally
this is a (autogenerated) separate model with a ForeignKey to your
Shared Model.

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-hvad 0.5.0 documentation

 Python Module Index

 h

 			

 		
 h	

 	[image: -]
 	
 hvad	

 	
 	
 hvad.admin	

 	
 	
 hvad.descriptors	

 	
 	
 hvad.exceptions	

 	
 	
 hvad.fieldtranslator	

 	
 	
 hvad.forms	

 	
 	
 hvad.manager	

 	
 	
 hvad.models	

 	
 	
 hvad.utils	

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	django-hvad 0.5.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

_

 	

 	__call__() (hvad.utils.SmartGetFieldByName method)

 	__delete__() (hvad.descriptors.LanguageCodeAttribute method)

 	

 	(hvad.descriptors.TranslatedAttribute method)

 	__get__() (hvad.descriptors.TranslatedAttribute method)

 	__init__() (hvad.forms.TranslatableModelForm method)

 	

 	(hvad.utils.SmartGetFieldByName method)

 	__metaclass__ (hvad.forms.TranslatableModelForm attribute)

 	__new__() (hvad.forms.TranslatableModelFormMetaclass method)

 	

 	(hvad.models.TranslatableModelBase method)

 	__set__() (hvad.descriptors.LanguageCodeAttribute method)

 	

 	(hvad.descriptors.TranslatedAttribute method)

 	_add_language_filter() (hvad.manager.TranslationQueryset method)

 	_add_select_related() (hvad.manager.TranslationQueryset method)

 	_build_model_info() (in module hvad.fieldtranslator)

 	_clone() (hvad.manager.FallbackQueryset method)

 	

 	(hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	_field_translator (hvad.manager.TranslationQueryset attribute)

 	_filter_extra() (hvad.manager.TranslationAwareQueryset method)

 	_find_language_code() (hvad.manager.TranslationQueryset method)

 	_get_class() (hvad.manager.TranslationQueryset method)

 	_get_model_from_field() (in module hvad.fieldtranslator)

 	

 	_get_shared_queryset() (hvad.manager.TranslationQueryset method)

 	_language() (hvad.admin.TranslatableAdmin method)

 	_language_code (hvad.manager.TranslationAwareQueryset attribute)

 	

 	(hvad.manager.TranslationQueryset attribute)

 	_language_fallbacks (hvad.manager.TranslationQueryset attribute)

 	_local_field_names (hvad.manager.TranslationQueryset attribute)

 	_post_clean() (hvad.forms.TranslatableModelForm method)

 	_recurse_q() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	_save_translation() (hvad.forms.BaseTranslationFormSet method)

 	_shared_field_names (hvad.models.TranslatableModel attribute)

 	_split_kwargs() (hvad.manager.TranslationQueryset method)

 	_strip_master() (hvad.manager.ValuesMixin method)

 	_translate_args_kwargs() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	_translate_fieldnames() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	_translated_field_names (hvad.models.TranslatableModel attribute)

 	_translation_fallbacks (hvad.manager.FallbackQueryset attribute)

A

 	

 	add_fields() (hvad.forms.BaseTranslationFormSet method)

 	aggregate() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	

 	all_translations()

 	

 	(hvad.admin.TranslatableAdmin method)

 	annotate() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

B

 	

 	BaseDescriptor (class in hvad.descriptors)

 	BaseTranslationFormSet (class in hvad.forms)

 	BaseTranslationModel (class in hvad.models)

 	

 	build() (hvad.manager.FieldTranslator method)

 	bulk_create() (hvad.manager.TranslationQueryset method)

C

 	

 	change_form_template (hvad.admin.TranslatableAdmin attribute)

 	clean() (hvad.forms.BaseTranslationFormSet method)

 	combine() (in module hvad.utils)

 	complex_filter() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	

 	contribute_to_class() (hvad.manager.TranslationManager method)

 	

 	(hvad.models.TranslatedFields method)

 	contribute_translations() (in module hvad.models)

 	create() (hvad.manager.TranslationQueryset method)

 	create_translations_model() (in module hvad.models)

D

 	

 	dates() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	datetimes() (hvad.manager.TranslationQueryset method)

 	default_class (hvad.manager.TranslationManager attribute)

 	

 	defer() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	delete() (hvad.manager.TranslationQueryset method)

 	delete_translations()

 	

 	(hvad.manager.TranslationQueryset method)

E

 	

 	earliest() (hvad.manager.TranslationQueryset method)

 	

 	exclude() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

F

 	

 	fallback_class (hvad.manager.TranslationManager attribute)

 	FALLBACK_LANGUAGES (in module hvad.manager)

 	FallbackQueryset (class in hvad.manager)

 	fallbacks()

 	

 	(hvad.manager.TranslationQueryset method)

 	

 	field_translator (hvad.manager.TranslationQueryset attribute)

 	FieldTranslator (class in hvad.manager)

 	filter() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	form (hvad.admin.TranslatableAdmin attribute)

G

 	

 	get() (hvad.manager.FieldTranslator method)

 	

 	(hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationQueryset method)

 	get_available_languages()

 	

 	(hvad.models.TranslatableModel method)

 	get_cached_translation() (in module hvad.utils)

 	get_change_form_base_template() (hvad.admin.TranslatableAdmin method)

 	get_form() (hvad.admin.TranslatableAdmin method)

 	get_language_tabs() (hvad.admin.TranslatableAdmin method)

 	

 	get_model_info() (in module hvad.fieldtranslator)

 	get_or_create() (hvad.manager.TranslationQueryset method)

 	get_queryset() (hvad.manager.TranslationAwareManager method)

 	

 	(hvad.manager.TranslationFallbackManager method)

 	(hvad.manager.TranslationManager method)

 	get_translation() (in module hvad.utils)

 	get_translation_aware_manager() (in module hvad.utils)

H

 	

 	hvad.admin (module)

 	hvad.descriptors (module)

 	hvad.exceptions (module)

 	hvad.fieldtranslator (module)

 	

 	hvad.forms (module)

 	hvad.manager (module)

 	hvad.models (module)

 	hvad.utils (module)

I

 	

 	in_bulk() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	instance (hvad.forms.BaseTranslationFormSet attribute)

 	

 	iterator() (hvad.manager.FallbackQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	(hvad.manager.ValuesMixin method)

L

 	

 	language()

 	

 	(hvad.manager.TranslationAwareQueryset method)

 	(hvad.manager.TranslationManager method)

 	(hvad.manager.TranslationQueryset method)

 	LanguageCodeAttribute (class in hvad.descriptors)

 	

 	latest() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	lazy_translation_getter()

 	

 	(hvad.models.TranslatableModel method)

M

 	

 	MODEL_INFO (in module hvad.fieldtranslator)

N

 	

 	name (hvad.descriptors.TranslatedAttribute attribute)

 	NORMAL (in module hvad.fieldtranslator)

 	

 	Normal Model

O

 	

 	objects (hvad.models.TranslatableModel attribute)

 	only() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	opts (hvad.descriptors.BaseDescriptor attribute)

 	

 	(hvad.descriptors.TranslatedAttribute attribute)

 	

 	order_by() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	order_translations() (hvad.forms.BaseTranslationFormSet method)

 	override_classes (hvad.manager.TranslationQueryset attribute)

P

 	

 	permissive_field_by_name() (in module hvad.utils)

 	prepare_translatable_model() (in module hvad.models)

 	

 	
 Python Enhancement Proposals

 	

 	PEP 8

Q

 	

 	query_language_key (hvad.admin.TranslatableAdmin attribute)

 	queryset() (hvad.admin.TranslatableAdmin method)

 	

 	queryset_class (hvad.manager.TranslationManager attribute)

R

 	

 	render_change_form() (hvad.admin.TranslatableAdmin method)

 	

 	reverse() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

S

 	

 	safe_translation_getter()

 	

 	(hvad.models.TranslatableModel method)

 	save()

 	

 	(hvad.forms.TranslatableModelForm method)

 	save_existing() (hvad.forms.BaseTranslationFormSet method)

 	save_new() (hvad.forms.BaseTranslationFormSet method)

 	save_translations() (hvad.models.TranslatableModel class method)

 	select_related()

 	

 	Shared Fields

 	Shared Model

 	shared_local_field_names (hvad.manager.TranslationQueryset attribute)

 	shared_model (hvad.manager.TranslationQueryset attribute)

 	SkipMasterSelectMixin (class in hvad.manager)

 	SmartGetFieldByName (class in hvad.utils)

T

 	

 	translatable_modelform_factory() (in module hvad.admin)

 	TranslatableAdmin (class in hvad.admin)

 	TranslatableModel (class in hvad.models)

 	TranslatableModelBase (class in hvad.models)

 	TranslatableModelForm (class in hvad.forms)

 	TranslatableModelFormMetaclass (class in hvad.forms)

 	translate()

 	

 	(hvad.models.TranslatableModel method)

 	(in module hvad.fieldtranslator)

 	TRANSLATED (in module hvad.fieldtranslator)

 	Translated Fields

 	Translated Model

 	TranslatedAttribute (class in hvad.descriptors)

 	TranslatedFields (class in hvad.models)

 	

 	Translation Manager

 	translation() (hvad.descriptors.BaseDescriptor method)

 	Translation-Aware Manager

 	TranslationAwareManager (class in hvad.manager)

 	TranslationAwareQueryset (class in hvad.manager)

 	TranslationFallbackManager (class in hvad.manager)

 	TranslationManager (class in hvad.manager)

 	TranslationQueryset (class in hvad.manager)

 	TRANSLATIONS (in module hvad.fieldtranslator)

 	Translations Model

 	translations_manager (hvad.manager.TranslationQueryset attribute)

 	translations_model (hvad.manager.TranslationManager attribute)

U

 	

 	untranslated() (hvad.manager.TranslationManager method)

 	update() (hvad.manager.TranslationQueryset method)

 	update_or_create() (hvad.manager.TranslationQueryset method)

 	

 	use_fallbacks()

 	

 	(hvad.manager.FallbackQueryset method)

 	(hvad.manager.TranslationFallbackManager method)

 	using_translations() (hvad.manager.TranslationManager method)

V

 	

 	values() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	values_list() (hvad.manager.TranslationAwareQueryset method)

 	

 	(hvad.manager.TranslationQueryset method)

 	

 	ValuesMixin (class in hvad.manager)

W

 	

 	WrongManager

 Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/plus.png

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/comment-bright.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		django-hvad 0.5.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2014, Kristian Øllegaard, Jonas Obrist & contributors.
 Created using Sphinx 1.2.2.

