
Django Hvad Documentation
Release 1.8.0

Jonas Obrist
contributors

Nov 20, 2018

Contents

1 About this project 1

2 Notes on Django versions 3

3 Contents 5
3.1 Installation . 5

3.1.1 Requirements . 5
3.1.2 Installation . 5

3.2 Quickstart . 6
3.2.1 Define a multilingual model . 6
3.2.2 Create a translated instance . 6
3.2.3 Querying translatable models . 7

3.3 Models . 8
3.3.1 Defining models . 8
3.3.2 New and Changed Methods . 9
3.3.3 Working with relations . 10
3.3.4 Advanced Model Definitions . 10
3.3.5 Custom Managers and Querysets . 11

3.4 Queryset API . 13
3.4.1 TranslationQueryset . 13
3.4.2 FallbackQueryset . 15

3.5 Forms . 16
3.5.1 TranslatableModelForm . 17
3.5.2 TranslatableModelForm factory . 17
3.5.3 TranslatableModel Formset . 18
3.5.4 TranslatableModel Inline Formset . 18
3.5.5 Translations Formset . 18

3.6 Admin . 20
3.6.1 New methods . 20
3.6.2 ModelAdmin APIs you should not change on TranslatableAdmin 20
3.6.3 Forms in admin . 21
3.6.4 ModelAdmin APIs not available on TranslatableAdmin . 21

3.7 REST Framework . 22
3.7.1 TranslatableModelSerializer . 22
3.7.2 HyperlinkedTranslatableModelSerializer . 23
3.7.3 TranslationsMixin . 24

3.8 Frequent Questions . 25

i

3.8.1 Why “django-hvad”? . 25
3.8.2 How do I get the right language from the request? . 25
3.8.3 How about multilingual URI? . 26
3.8.4 How do I use hvad with MPTT? . 27
3.8.5 How do I separate translatable fields in admin? . 27

3.9 Release Notes . 28
3.9.1 1.8.0 - current release . 28
3.9.2 1.7.0 . 29
3.9.3 1.6.0 . 30
3.9.4 1.5.1 . 30
3.9.5 1.5.0 . 30
3.9.6 1.4.0 . 31
3.9.7 1.3.0 . 32
3.9.8 1.2.2 . 32
3.9.9 1.2.1 . 33
3.9.10 1.2.0 . 33
3.9.11 1.1.1 . 33
3.9.12 1.1.0 . 33
3.9.13 1.0.0 . 34
3.9.14 0.5.2 . 35
3.9.15 0.5.1 . 35
3.9.16 0.5.0 . 35
3.9.17 0.4.1 . 36
3.9.18 0.4.0 . 37
3.9.19 0.3 . 37
3.9.20 0.2 . 38
3.9.21 0.1.4 (Alpha) . 38
3.9.22 0.1.3 (Alpha) . 38
3.9.23 0.0.4 (Alpha) . 38
3.9.24 0.0.3 (Alpha) . 38
3.9.25 0.0.2 (Alpha) . 39
3.9.26 0.0.1 (Alpha) . 39

3.10 Contact and support channels . 39
3.11 How to contribute . 39

3.11.1 Running the tests . 39
3.11.2 Contributing Code . 40
3.11.3 Contributing Documentation . 40

3.12 Internal API Documentation . 40
3.12.1 About this part of the documentation . 40
3.12.2 Contents . 41

3.13 Glossary . 60
3.14 Indices and tables . 61

Python Module Index 63

ii

CHAPTER 1

About this project

django-hvad provides a high level API to maintain multilingual content in your database using the Django ORM.

Please note that this documentation assumes that you are familiar with Django and Python, if you are not, please
familiarize yourself with those first.

1

Django Hvad Documentation, Release 1.8.0

2 Chapter 1. About this project

CHAPTER 2

Notes on Django versions

The guideline is hvad supports all Django versions that are supported by the Django team. This holds true for Long-
Term Support releases as well. Support for new versions will usually be introduced when they reach the beta stage.

Thus, django-hvad 1.5 is tested on the following configurations:

• Django 1.7.11, running Python 2.7, 3.3 or 3.4.

• Django 1.8.9, running Python 2.7, 3.3, 3.4 or 3.5.

• Django 1.9.2, running Python 2.7, 3.4 or 3.5.

All tests are run against MySQL and PostgreSQL.

3

Django Hvad Documentation, Release 1.8.0

4 Chapter 2. Notes on Django versions

CHAPTER 3

Contents

3.1 Installation

3.1.1 Requirements

• Django 1.8 or higher.

• Python 2.7 or PyPy 1.5 or higher, Python 3.4 or higher.

3.1.2 Installation

Packaged version

This is the recommended way. Install django-hvad using pip by running:

pip install django-hvad

This will download the latest version from pypi and install it.

Then add 'hvad' to your INSTALLED_APPS, and proceed to Quickstart.

Latest development version

If you need the latest features from a yet unreleased version, or just like living on the edge, install django-hvad using
pip by running:

pip install https://github.com/kristianoellegaard/django-hvad/tarball/master

This will download the development branch from github and install it.

Then add 'hvad' to your INSTALLED_APPS, and proceed to Quickstart.

5

http://www.djangoproject.com
http://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/django-hvad
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS
http://pypi.python.org/pypi/pip
https://github.com/kristianoellegaard/django-hvad
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-INSTALLED_APPS

Django Hvad Documentation, Release 1.8.0

3.2 Quickstart

3.2.1 Define a multilingual model

Defining a multilingual model is very similar to defining a normal Django model, with the difference that instead of
subclassing Model you have to subclass TranslatableModel and that all fields which should be translatable
have to be wrapped inside a TranslatedFields.

Let’s write an easy model which describes Django applications with translatable descriptions and information about
who wrote the description:

from django.db import models
from hvad.models import TranslatableModel, TranslatedFields

class DjangoApplication(TranslatableModel):
name = models.CharField(max_length=255, unique=True)
author = models.CharField(max_length=255)

translations = TranslatedFields(
description=models.TextField(),
description_author=models.CharField(max_length=255),

)

def __unicode__(self):
return self.name

The fields name and author will not get translated, the fields description and description_author will.

3.2.2 Create a translated instance

Now that we have defined our model, let’s play around with it a bit. The following code examples are taken from a
Python shell.

Import our model:

>>> from myapp.models import DjangoApplication

Create an instance:

>>> hvad = DjangoApplication.objects.language('en').create(
name='django-hvad', author='Jonas Obrist',
description='A project to do multilingual models in Django',
description_author='Jonas Obrist',

)
>>> hvad.name
'django-hvad'
>>> hvad.author
'Jonas Obrist'
>>> hvad.description
'A project to do multilingual models in Django'
>>> hvad.description_author
'Jonas Obrist'
>>> hvad.language_code
'en'
>>> hvad.save()

6 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model

Django Hvad Documentation, Release 1.8.0

This is the most straightforward way to create a new instance with translated fields. Doing it this way avoids the
possibility of creating instances with no translation at all, something one usually wants to avoid.

Once we have an instance, we can add new translations. Let’s add some French:

>>> hvad.translate('fr')
<DjangoApplication: django-hvad>
>>> hvad.name
'django-hvad'
>>> hvad.description
>>> hvad.description = 'Un projet pour gérer des modèles multilingues sous Django'
>>> hvad.description_author = 'Julien Hartmann'
>>> hvad.save()

Note: The translate() method creates a brand new translation in the specified language. Please note that it does
not check the database, and that if the translation already exists, a database integrity exception will be raised when
saving.

3.2.3 Querying translatable models

Get the instance again and check that the fields are correct:

>>> obj = DjangoApplication.objects.language('en').get(name='django-hvad')
>>> obj.name
u'django-hvad'
>>> obj.author
u'Jonas Obrist'
>>> obj.description
u'A project to do multilingual models in Django'
>>> obj.description_author
u'Jonas Obrist'

We use language() to tell hvad we want to use translated fields, in English. This is one of the three ways to query
a translatable model. It only ever considers instance that have a translation in the specified language and match the
filters in that language.

Other ways are untranslated(), which uses a fallback algorithm to fetch the best translation within a list of
languages, and direct, vanilla use of the queryset, which does not know about translations or translated fields at all.

Back to our instance, get it again, in other languages:

>>> obj = DjangoApplication.objects.language('fr').get(name='django-hvad')
>>> obj.description
u'Un projet pour gérer des modèles multilingues sous Django'
>>>
>>> DjangoApplication.objects.language('ja').filter(name='django-hvad')
[]

See how, in the second query, the fact that no translation exist in Japanese for our object had it filtered out of the query.

Note: We set an explicit language when calling language() because we are in an interactive shell, which is
not necessarily in English. In your normal views, you can usually omit the language simply writing MyModel.
objects.language().get(...). This will use get_language() to get the language the environment is
using at the time of the query.

3.2. Quickstart 7

https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language

Django Hvad Documentation, Release 1.8.0

Let’s get all Django applications which have a description written by 'Jonas Obrist' (in English, then in French):

>>> DjangoApplication.objects.language('en').filter(description_author='Jonas Obrist')
[<DjangoApplication: django-hvad>]
>>> DjangoApplication.objects.language('fr').filter(description_author='Jonas Obrist')
[]

Notice how the second query only considers French translations and returns an empty set.

Next, we will have a more detailed look at how to work with translatable models.

3.3 Models

• Defining models

• New and Changed Methods

• Working with relations

• Advanced Model Definitions

• Custom Managers and Querysets

3.3.1 Defining models

Defining models with django-hvad is done by inheriting TranslatableModel. Model definition works like in
regular Django, with the following additional features:

• Translatable fields can be defined on the model, by wrapping them in a TranslatedFields instance, and
assigning it to an attribute on the model. That attribute will be used to access the translations of your model
directly. Behind the scenes, it will be a reversed ForeignKey from the Translations Model to your Shared Model.

• Translatable fields can be used in the model options. For options that take groupings of fields
(unique_together and index_together), each grouping may have either translatable or non-
translatable fields, but not both.

• Special field language_code is automatically created by hvad, and may be used for defining
unique_together constraints that are only unique per language.

A full example of a model with translations:

from django.db import models
from hvad.models import TranslatableModel, TranslatedFields

class TVSeries(TranslatableModel):
distributor = models.CharField(max_length=255)

translations = TranslatedFields(
title = models.CharField(max_length=100),
subtitle = models.CharField(max_length=255),
released = models.DateTimeField(),

)
class Meta:

unique_together = [('title', 'subtitle')]

8 Chapter 3. Contents

Django Hvad Documentation, Release 1.8.0

Note: The Meta class of the model may not use the translatable fields in order_with_respect_to.

Note: TranslatedFields cannot contain a field named master, as this name is reserved by hvad to refer to the Shared
Model. Also, special field language_code can be overriden in order to set it to be a different type of field, or
change its options.

3.3.2 New and Changed Methods

translate

translate(language_code)
Prepares a new translation for this instance for the language specified.

Note: This method does not perform any database queries. It assumes the translation does not exist. If it does
exist, trying to save the instance will raise an IntegrityError.

safe_translation_getter

safe_translation_getter(name, default=None)
Returns the value of the field specified by name if it’s available on this instance in the currently cached language.
It does not try to get the value from the database. Returns the value specified in default if no translation was
cached on this instance or the translation does not have a value for this field.

This method is useful to safely get a value in methods such as __unicode__().

Note: This method never performs any database queries.

Example usage:

class MyModel(TranslatableModel):
translations = TranslatedFields(

name = models.CharField(max_length=255)
)

def __unicode__(self):
return self.safe_translation_getter('name', str(self.pk))

lazy_translation_getter

Changed in version 0.4.

lazy_translation_getter(name, default=None)
Tries to get the value of the field specified by name using safe_translation_getter(). If this fails,
tries to load a translation from the database. If none exists, returns the value specified in default.

This method is useful to get a value in methods such as __unicode__().

3.3. Models 9

https://django.readthedocs.io/en/latest/topics/db/models.html#meta-options
https://django.readthedocs.io/en/latest/ref/models/options.html#django.db.models.Options.order_with_respect_to
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.db.IntegrityError

Django Hvad Documentation, Release 1.8.0

get_available_languages

get_available_languages()
Returns a list of available language codes for this instance.

Note: This method runs a database query to fetch the available languages, unless they were prefetched before
(if the instance was retrieved with a call to prefetch_related('translations')).

save

save(force_insert=False, force_update=False, using=None, update_fields=None)
Overrides save().

This method runs an extra query to save the translation cached on this instance, if any translation was cached.

It accepts both translated and untranslated fields in update_fields.

• If only untranslated fields are specified, the extra query will be skipped.

• If only translated fields are specified, the shared model update will be skipped. Note that this means signals
will not be triggered.

3.3.3 Working with relations

Foreign keys pointing to a Translated Model always point to the Shared Model. It is not possible to have a foreign key
to a Translations Model.

Please note that select_related() used on a foreign key pointing from a normal model to a translatable model
does not span to its translations and therefore accessing a translated field over the relation will cause an extra query.
Foreign keys from a translatable model do not have this restriction.

If you wish to filter over a translated field over the relation from a Normal Model you have to use
get_translation_aware_manager() to get a manager that allows you to do so. That function takes your
model class as argument and returns a manager that works with translated fields on related models.

3.3.4 Advanced Model Definitions

Abstract Models

New in version 0.5.

Abstract models can be used normally with hvad. Untranslatable fields of the base models will remain untrans-
latable, while translatable fields will be translatable on the concrete model as well:

class Place(TranslatableModel):
coordinates = models.CharField(max_length=64)
translations = TranslatedFields(

name = models.CharField(max_length=255),
)
class Meta:

abstract = True

class Restaurant(Place):
(continues on next page)

10 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.save
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.select_related
https://django.readthedocs.io/en/latest/topics/db/models.html#abstract-base-classes

Django Hvad Documentation, Release 1.8.0

(continued from previous page)

score = models.PositiveIntegerField()
translations = TranslatedFields() # see note below

Note: The concrete models must have a TranslatedFields instance as one of their attributes. This is required
because this attribute will be used to access the translations. It can be empty.

Proxy Models

New in version 0.4.

Proxy models can be used normally with hvad, with the following restrictions:

• The __init__ method of the proxy model will not be called when it is loaded from the database.

• As a result, the pre_init and post_init signals will not be sent for the proxy model either.

The __init__ method and signals for the concrete model will still be called.

Multi-table Inheritance

Unfortunately, multi-table inheritance is not supported, and unlikely to be. Please read #230 about the issues with
multi-table inheritance.

3.3.5 Custom Managers and Querysets

Custom Manager

Vanilla managers, using vanilla querysets can be used with translatable models. However, they will not have
access to translations or translatable fields. Also, such a vanilla manager cannot server as a default manager for
the model. The default manager must be translation aware.

To have full access to translations and translatable fields, custom managers must inherit TranslationManager
and custom querysets must inherit either TranslationQueryset (enabling the use of language()) or
FallbackQueryset (enabling the use of use_fallbacks()). Both are described in the dedicated section.

Custom Querysets

Once you have a custom queryset, you can use it to override the default ones in your manager. This is where it is
more complex than a regular manager: TranslationManager uses three types of queryset, that can be overriden
independently:

• queryset_class must inherit TranslationQueryset, and will be used for all queries that call the
language() method.

• fallback_class must inherit FallbackQueryset, and will be used for all queries that call the
untranslated() method.

• default_class may be any kind of queryset (a TranslationQueryset, a FallbackQueryset or a
plain QuerySet). It will be used for all queries that call neither language nor untranslated. It defaults
to being a regular, translation-unaware QuerySet for compatibility, see next section about overriding it.

3.3. Models 11

https://django.readthedocs.io/en/latest/topics/db/models.html#proxy-models
https://django.readthedocs.io/en/latest/ref/signals.html#django.db.models.signals.pre_init
https://django.readthedocs.io/en/latest/ref/signals.html#django.db.models.signals.post_init
https://github.com/KristianOellegaard/django-hvad/issues/230
https://django.readthedocs.io/en/latest/topics/db/managers.html#django.db.models.Manager
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet

Django Hvad Documentation, Release 1.8.0

As a convenience, it is possible to override the queryset at manager instanciation, avoiding the need to subclass the
manager:

class TVSeriesTranslationQueryset(TranslationQueryset):
def is_public_domain(self):

threshold = datetime.now() - timedelta(days=365*70)
return self.filter(released__gt=threshold)

class TVSeries(TranslatableModel):
... (see full definition in previous example)
objects = TranslationManager(queryset_class=TVSeriesTranslationQueryset)

Overriding Default Queryset

New in version 0.6.

By default, the TranslationManager returns a vanilla, translation-unaware QuerySet when a query is done
without either language() or untranslated(). This conservative behavior makes it compatible with third
party modules. It is, however, possible to set it to be translation-aware by overriding it:

class MyModel(TranslatableModel):
objects = TranslationManager(default_class=TranslationQueryset)

This deeply changes key behaviors of the manager, with many benefits:

• The call to language() can be omitted, filtering on translations is implied in all queries. It is still possible to
use it to set another language on the queryset.

• As a consequence, all third-party modules will only see objects in current language, unless they are hvad-aware.

• They will also gain access to translated fields.

• Queries that use prefetch_related() will prefetch the translation as well (in current language).

• Acessing a translatable model from a ForeignKey or a GenericForeignKey will also load and cache the
translation in current language.

In other terms, all queries become translation-aware by default.

Warning: Some third-party modules may break if they rely on the ability to see all objects. MPTT, for instance,
will corrupt its tree if some objects have no translation in current language. Use caution when combining this
feature with other manager-altering modules.

Custom Translation Models

New in version 1.5.

It is possible to have translations use a custom base class, by specifying a base_class argument to
TranslatedFields. This may be useful for advanced manipulation of translations, such as customizing some
model methods, for instance from_db():

class BookTranslation(models.Model):
@classmethod
def from_db(cls, db, fields, values):

obj = super(BookTranslation, self).from_db(cls, db, field, values)
obj.loaded_at = timezone.now()

(continues on next page)

12 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.prefetch_related
https://django.readthedocs.io/en/latest/ref/models/fields.html#django.db.models.ForeignKey
https://django.readthedocs.io/en/latest/ref/contrib/contenttypes.html#django.contrib.contenttypes.fields.GenericForeignKey
https://github.com/django-mptt/django-mptt/
https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.from_db

Django Hvad Documentation, Release 1.8.0

(continued from previous page)

return obj

class Meta:
abstract = True

class Book(TranslatableModel):
translations = TranslatedFields(

base_class = BookTranslation,
name = models.CharField(max_length=255),

)

In this example, the Book’s translation model will have BookTranslation as its first base class, so every transla-
tion will have a loaded_at attribute when loaded from the database. Keep in mind this attribute will not be available
on the book itself, but can be accessed through get_cached_translation(book).loaded_at.

Such classes are inserted into the translations inheritance tree, so if some other model inherits Book, its translations
will also inherit BookTranslation.

Next, we will detail the translation-aware querysets provided by hvad.

3.4 Queryset API

If you do not need to do fancy things such as custom querysets and are not in the process of optimizing your queries
yet, you can skip straight to next section, to start using your translatable models to build some forms.

The queryset API is at the heart of hvad. It provides the ability to filter on translatable fields and retrieve instances
along with their translations. They come in two flavors:

• The TranslationQueryset, for working with instances translated in a specific language. It is the one used when
calling TranslationManager.language().

• The FallbackQueryset, for working with all instances regardless of their language, and eventually load-
ing translations using a fallback algorithm. It is the one used when calling TranslationManager.
untranslated().

Note: It is possible to override the querysets used on a model’s manager.

3.4.1 TranslationQueryset

The TranslationQueryset works on a translatable model, limiting itself to instances that have a translation in a specific
language. Its API is almost identical to the regular Django QuerySet.

New and Changed Methods

language

language(language_code=None)
Sets the language for the queryset to either the given language code or the currently active language if None.
Language resolution will be deferred until the query is evaluated.

3.4. Queryset API 13

https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet

Django Hvad Documentation, Release 1.8.0

This filters out all instances that are not translated in the given language, and makes translatable fields available
on the query results.

The special value 'all' disables language filtering. This means that objects will be returned once per language
in which they match the query, with the appropriate translation loaded.

Note: support for select_related() in combination with language('all') is experimental. Please check
the generated queries and open an issue if you have any problem. Feedback is appreciated as well.

fallbacks

fallbacks(*languages)
New in version 0.6.

Enables fallbacks on the queryset. When the queryset has fallbacks enabled, it will try to use fallback languages
if an object has not translation available in the language given to language().

The languages arguments specified the languages to use, priorized from first to last. Special value None will be
replaced with current language as returned by get_language(). If called with an empty argument list, the
LANGUAGES setting will be used.

If an instance has no translation in the language()-specified language, nor in any of the languages given to
fallbacks(), an arbitrary translation will be picked.

Passing the single value None alone will disable fallbacks.

Note: This feature requires Django 1.6 or newer.

delete_translations

delete_translations()
Deletes all Translations Model instances matched by a queryset, without deleting the Shared Model instances.

This can be used to target specific translations of specific objects for deletion. For instance:

Delete English translation of all objects that have field == "foo"
MyModel.objects.language('en').filter(field='foo').delete_translations()

Delete all translations but English for object with id 42
MyModel.objects.language('all').exclude(language_code='en').filter(pk=42).delete_
→˓translations()

Warning: It is an error to delete all translations of an instance. This will cause the object to be unreachable
through translation-aware queries and invisible in the admin panel.

If you delete all translations and re-create one immediately after, remember to enclose the whole process in
a transaction to avoid the possibility of leaving the object unreachable.

14 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES

Django Hvad Documentation, Release 1.8.0

select_related

select_related(*fields)
Inherited from select_related().

The select_related method also selects translations of translatable models when it encounters some.

Note: support for select_related in combination with language('all') is experimental. Please
check the generated queries and open an issue if you have any problem. Feedback is appreciated as well.

Not implemented public queryset methods

The following are methods on a queryset which are public APIs in Django, but are not implemented (yet) in django-
hvad:

• bulk_create()

• update_or_create()

• complex_filter()

• defer()

• only()

Using any of these methods will raise a NotImplementedError.

Performance consideration

While most methods on TranslationQueryset run using the same amount of queries as if they were untranslated,
they all do slightly more complex queries (one extra join).

The following methods run two queries where standard querysets would run one:

• create()

• update() (only if both translated and untranslated fields are updated at once)

get_or_create() runs one query if the object exists, three queries if the object does not exist in this language,
but in another language and four queries if the object does not exist at all. It will return True for created if either the
shared or translated instance was created.

3.4.2 FallbackQueryset

Deprecated since version 1.4.

This is a queryset returned by untranslated(), which can be used both to get the untranslated parts of models
only or to use fallbacks for loading a translation based on a priority list of languages. By default, only the untranslated
parts of models are retrieved from the database, and accessing translated field will trigger an additional query for each
instance.

Warning: You may not use any translated fields in any method on this queryset class.

3.4. Queryset API 15

https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.select_related
https://docs.python.org/2.7/library/exceptions.html#exceptions.NotImplementedError

Django Hvad Documentation, Release 1.8.0

Warning: If you have a default ordering defined on your model and it includes any translated field, you must
specify an ordering on every query so as not to use the translated fields specified by the default ordering.

New Methods

use_fallbacks

Changed in version 0.5.

use_fallbacks(*fallbacks)
Deprecated since version 1.4.

Returns a queryset which will use fallbacks to get the translated part of the instances returned by this queryset. If
fallbacks is given as a tuple of language codes, it will try to get the translations in the order specified, replac-
ing the special None value with the current language at query evaluation, as returned by get_language().
Otherwise the order of your LANGUAGES setting will be used, prepended with current language.

This method is now deprecated, and one should use TranslationQueryset.fallbacks() for an equivalent feature.

Warning: Using fallbacks with a version of Django older than 1.6 will cause a lot of queries! In the worst
case 1 + (n * x) with n being the amount of rows being fetched and x the amount of languages given as
fallbacks. Only ever use this method when absolutely necessary and on a queryset with as few results as
possible.

Changed in version 0.5: Fallbacks were reworked, so that when running on Django 1.6 or newer, only one
query is needed.

Not implemented public queryset methods

The following are methods on a queryset which are public APIs in Django, but are not implemented on fallback
querysets.

• aggregate()

• annotate()

• defer()

• only()

Next, we will use our models and queries to build some forms.

3.5 Forms

Although Django’s ModelForm can work with translatable models, they will only know about untranslatable fields.
Don’t worry though, django-hvad’s got you covered with the following form types:

• TranslatableModelForm is the translation-enabled counterpart to Django’s ModelForm.

• Translatable formsets is the translation-enabled counterpart to Django’s model formsets, for editing several
instances at once.

16 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/models/options.html#django.db.models.Options.ordering
https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.aggregate
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.annotate
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.defer
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.only
https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm
https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm
https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#model-formsets

Django Hvad Documentation, Release 1.8.0

• Translatable inline formsets is the translation-enabled counterpart to Django’s inline formsets, for edit-
ing several instances attached to another object.

• Translation formsets allows building a formset of all the translations of a single instance for editing them all at
once. For instance, in a tabbed view.

3.5.1 TranslatableModelForm

TranslatableModelForms work like ModelForm, but can display and edit translatable fields as well. Their use is very
similar, except the form must subclass TranslatableModelForm instead of ModelForm:

class ArticleForm(TranslatableModelForm):
class Meta:

model = Article
fields = ['pub_date', 'headline', 'content', 'reporter']

Notice the difference from Django's example? There is none but for the parent class. This ArticleForm
will allow editing of one Article in one language, correctly introspecting the model to know which fields are
translatable.

The form can work in either normal mode, or enforce mode. This affects the way the form chooses a language for
displaying and committing.

• A form is in normal mode if it has no language set. This is the default. In this mode, it will use the language of
the instance it is given, defaulting to current language if not instance is specified.

• A form is in enforce mode if is has a language set. This is usually achieved by calling translat-
able_modelform_factory. When in enforce mode, the form will always use its language, disregarding current
language and reloading the instance it is given if it has another language loaded.

• The language can be overriden manually by providing a custom clean() method.

In all cases, the language is not part of the form seen by the browser or sent in the POST request. If you need to
change the language based on some user input, you must override the clean() method with your own logic, and set
cleaned_data ['language_code'] with it.

All features of Django forms work as usual.

3.5.2 TranslatableModelForm factory

Similar to Django’s ModelForm factory, hvad eases the generation of uncustomized forms by providing a fac-
tory:

BookForm = translatable_modelform_factory('en', Book, fields=('author', 'title'))

The translation-aware version works exactly the same way as the original one, except it takes the language the form
should use as an additional argument.

The returned form class is in enforce mode.

Note: If using the form= parameter, the given form class must inherit TranslatableModelForm.

3.5. Forms 17

https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#inline-formsets
https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm
https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm
https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm
https://django.readthedocs.io/en/latest/ref/forms/api.html#django.forms.Form.clean
https://django.readthedocs.io/en/latest/ref/forms/api.html#django.forms.Form.cleaned_data
https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#modelforms-factory

Django Hvad Documentation, Release 1.8.0

3.5.3 TranslatableModel Formset

Similar to Django’s ModelFormset factory, hvad provides a factory to create formsets of translatable models:

AuthorFormSet = translatable_modelformset_factory('en', Author)

This formset allows edition a collection of Author instances, all of them being in English.

All arguments supported by Django’s modelformset_factory() can be used.

For instance, it is possible to override the queryset, the same way it is done for a regular formset. In fact, it is
recommended for performance, as the default queryset will not prefetch translations:

BookForm = translatable_modelformset_factory(
'en', Book, fields=('author', 'title'),
queryset=Book.objects.language('en').all(),

)

Here, using language() ensures translations will be loaded at once, and allows filtering on translated fields is
needed.

The returned formset class is in enforce mode.

Note: To override the form by passing a form= argument to the factory, the custom form must inherit Translatable-
ModelForm.

3.5.4 TranslatableModel Inline Formset

Similar to Django’s inline formset factory, hvad provides a factory to create inline formsets of translatable
models:

BookFormSet = translatable_inlineformset_factory('en', Author, Book)

This creates an inline formset, allowing edition of a collection of instances of Book attached to a single instance of
Author, all of those objects being editted in English. It does not allow editting other languages; for this, please see
translationformset_factory.

Any argument accepted by Django’s inlineformset_factory() can be used with
translatable_inlineformset_factory as well.

The returned formset class is in enforce mode.

Note: To override the form by passing a form= argument to the factory, the custom form must inherit Translatable-
ModelForm.

3.5.5 Translations Formset

Basic usage

The translation formset allows one to edit all translations of an instance at once: adding new translations, updating and
deleting existing ones. It works mostly like regular BaseInlineFormSet except it automatically sets itself up for
working with the Translations Model of given TranslatableModel.

18 Chapter 3. Contents

https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#model-formsets
https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.modelformset_factory
https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#inline-formsets
https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.inlineformset_factory
https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.models.BaseInlineFormSet

Django Hvad Documentation, Release 1.8.0

Example:

from django.forms.models import modelform_factory
from hvad.forms import translationformset_factory
from myapp.models import MyTranslatableModel

MyUntranslatableFieldsForm = modelform_factory(MyTranslatableModel)
MyTranslationsFormSet = translationformset_factory(MyTranslatableModel)

Now, MyUntranslatableFieldsForm is a regular, Django, translation-unaware form class, showing only the
untranslatable fields of an instance, while MyTranslationsFormSet is a formset class showing only the translat-
able fields of an instance, with one form for each available translation (plus any additional forms requested with the
extra parameter - see modelform_factory()).

Custom Translation Form

As with regular formsets, one may specify a custom form class to use. For instance:

class MyTranslationForm(ModelForm):
class Meta:

fields = ['title', 'content', 'slug']

MyTranslationFormSet = translationformset_factory(
MyTranslatableModel, form=MyTranslationForm, extra=1

)

Note: The translations formset will use a language_code field if defined, or create one automatically if none was
defined.

One may also specify a custom formset class to use. It must inherit BaseTranslationFormSet.

Wrapping it up: editing the whole instance

A common requirement, being able to edit the whole instance at once, can be achieved by combining a regular,
translation unaware ModelForm with a translation formset in the same view. It works the way one would expect it
to. The following code samples highlight a few gotchas.

Creating the form and formset for the object:

FormClass = modelform_factory(MyTranslatableModel)
TranslationsFormSetClass = translationformset_factory(MyTranslatablemodel)

self.object = self.get_object()
form = FormClass(instance=self.object, data=request.POST)
formset = TranslationsFormSetClass(instance=self.object, data=request.POST)

Checking submitted form validity:

if form.is_valid() and formset.is_valid():
form.save(commit=False)
formset.save()
self.object.save_m2m() # only if our model has m2m relationships
return HttpResponseRedirect('/confirm_edit_success.html')

3.5. Forms 19

https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.modelform_factory
https://django.readthedocs.io/en/latest/topics/forms/modelforms.html#django.forms.ModelForm

Django Hvad Documentation, Release 1.8.0

Note: When saving the formset, translations will be recombined with the main object, and saved as a whole. This
allows custom save() defined on the model to be called properly and signal handlers to be fed a full instance. For
this reason, we use commit=False while saving the form, avoiding a useless query.

Warning: You must ensure that form.instance and formset.instance reference the same object, so
that saving the formset does not overwrite the values computed by form.

A common way to use this view would be to render the form on top, with the formset below it, using JavaScript to
show each translation in a tab.

Next, we will take a look at the administration panel.

3.6 Admin

When you want to use a Translated Model in the Django admin, you have to subclass hvad.admin.
TranslatableAdmin instead of django.contrib.admin.ModelAdmin.

3.6.1 New methods

all_translations

all_translations(obj)
A method that can be used in list_display and shows a list of languages in which this object is available.
Entries are linked to their corresponding admin page.

Note: You should add prefetch_related(‘translations’) to your queryset if you use this in list_display,
else one query will be run for every item in the list.

3.6.2 ModelAdmin APIs you should not change on TranslatableAdmin

Some public APIs on django.contrib.admin.ModelAdmin are crucial for hvad.admin.
TranslatableAdmin to work and should not be altered in subclasses. Only do so if you have a good
understanding of what the API you want to change does.

The list of APIs you should not alter is:

change_form_template

If you wish to alter the template used to render your admin, use the implicit template fallback in the Django
admin by creating a template named admin/<appname>/<modelname>/change_form.html or admin/
<appname>/change_form.html. The template used in django-hvad will automatically extend that template if
it’s available.

20 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.save
https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin
https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.list_display
https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin

Django Hvad Documentation, Release 1.8.0

get_form

Use hvad.admin.TranslatableAdmin.form instead, but please see the notes regarding Forms in admin.

render_change_form

The only thing safe to alter in this method in subclasses is the context, but make sure you call this method on the
superclass too. There’s three variable names in the context you should not alter:

• title

• language_tabs

• base_template

get_object

Just don’t try to change this.

queryset

If you alter this method, make sure to call it on the superclass too to prevent duplicate objects to show up in the
changelist or change views raising django.core.exceptions.MultipleObjectsReturned errors.

3.6.3 Forms in admin

If you want to alter the form to be used on your hvad.admin.TranslatableAdmin subclass, it must inherit
from hvad.forms.TranslatableModelForm. For more informations, see Forms.

3.6.4 ModelAdmin APIs not available on TranslatableAdmin

A list of public APIs on django.contrib.admin.ModelAdminwhich are not implemented on hvad.admin.
TranslatableAdmin for handling translatable fields, these APIs should continue to work as usual for non-
translatable fields.

• actions1

• date_hierarchy1

• fieldsets1

• list_display1

• list_display_links1

• list_filter1

• list_select_related1

• list_ediable1

• prepopulated_fields1

• search_fields1

1 This API can only be used with Shared Fields.

3.6. Admin 21

https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.MultipleObjectsReturned
https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin

Django Hvad Documentation, Release 1.8.0

3.7 REST Framework

New in version 1.2.

What would be a modern application without dynamic components? Well, it would not be so modern to begin with.
This is why django-hvad provides fully tested and integrated support for Django REST framework.

The philosophy is the same one that is used for Django’s forms, hvad providing the following extensions:

• TranslatableModelSerializer is the translation-enabled counterpart to ModelSerializer.

• HyperlinkedTranslatableModelSerializer is the translation-enabled counterpart to HyperlinkedModelSerializer.

• TranslationsMixin can be plugged into a ModelSerializer to add a dictionary of all available translations. Writing
is supported as well.

Note: Support for REST framework requires Django REST Framework version 3.1 or newer.

3.7.1 TranslatableModelSerializer

hvad.contrib.restframework.TranslatableModelSerializer

TranslatableModelSerializer works like ModelSerializer, but can serialize and deserialize translatable fields as
well. Their use is very similar, except the serializer must subclass hvad.contrib.restframework.
TranslatableModelSerializer:

class BookSerializer(TranslatableModelSerializer):
class Meta:

model = Book
fields = ['title', 'author', 'review']

Notice the difference from a regular serializer? There is none. This BookSerializer will allow serializing and
deserializing one Book in one language, correctly introspecting the model to know which fields are translatable.

It is also possible to include the language on the serializer. This is done by default (if no fields is specified), or you
may include 'language_code' as part of the field list.

Like TranslatableModelForm, TranslatableModelSerializer can work in either normal mode, or enforce
mode. The semantics of both mode are exactly the same as with forms, selecting the way a language is chosen for
serializing and deserializing.

• A serializer is in normal mode if it has no language set. This is the default. In this mode, it will use the language
of the instance it is given, defaulting to current language if no instance is specified.

• A serializer is in enforce mode if is has a language set. This is achieved by giving it a language= argument
at instanciation. When in enforce mode, the serializer will always use its own language, disregarding current
language and reloading the instance it is given if it has another language loaded.

• The language can be overriden manually by providing a custom validate() method. This method should
set the desired language in data['language_code']. Please refer to REST framework documentation for
details on the validate() method.

When the serializer is in normal mode, it is possible to send 'language_code' as part of the serialized represen-
tation. More on this below. In enforce mode however, including a language code in a POST, PATCH or PUT request
is an error that will raise a ValidationError as appropriate.

All features of regular REST framework serializers work as usual.

22 Chapter 3. Contents

http://www.django-rest-framework.org/
http://www.django-rest-framework.org/api-guide/serializers/#modelserializer
http://www.django-rest-framework.org/api-guide/serializers/#hyperlinkedmodelserializer
http://www.django-rest-framework.org/api-guide/serializers/#modelserializer
http://www.django-rest-framework.org/api-guide/serializers/#validation

Django Hvad Documentation, Release 1.8.0

Examples

Adding the language to the serialized data, in normal mode:

class BookSerializer(TranslatableModelSerializer):
class Meta:

model = Book
fields = ['title', 'author', 'language_code']

Now language appears in serialized representation
serializer = BookSerializer(instance=Book.objects.language('ja').get(pk=1))
=> {"title": "", "author": "12", "language_code": "ja" }

It can also be set explicitly in POST/PUT/PATCH data
print(data['language_code']) # 'fr'
serializer = BookSerializer(data=data)
if serializer.is_valid():

obj = serializer.save()
assert obj.language_code == 'fr'

Setting a serializer in enforce mode:

In enforce mode, serialized data will always use the enforced language
serializer = BookSerializer(instance=Book.objects.untranslated().get(pk=1), language=
→˓'en')
assert serializer.data['language_code'] == 'en'

In enforce mode, language is implicit
assert 'language_code' not in request.data
serializer = BookSerializer(data=request.data, language='fr')
if serializer.is_valid():

obj = serializer.save()
assert obj.language_code == 'fr'

In enforce mode, language must not be provided in data
assert 'language_code' in request.data
serializer = BookSerializer(data=request.data, language='fr')
assert not serializer.is_valid()

Manually overriding deserialized language:

class UserBookSerializer(TranslatableModelSerializer):
def validate(self, data):

assuming you made a custom User model that has an associated
preferences object including the user's preferred language
data = super(UserBookSerializer, self).validate(data)
data['language_code'] = self.context['request'].user.preferences.language
return data

class Meta:
model = Book

3.7.2 HyperlinkedTranslatableModelSerializer

hvad.contrib.restframework.HyperlinkedTranslatableModelSerializer

The HyperlinkedTranslatableModelSerializer is equivalent to TranslatableModelSerializer,

3.7. REST Framework 23

Django Hvad Documentation, Release 1.8.0

except it outputs hyperlinks instead of ids. There is not much to add here, everything that applies to Translatable-
ModelSerializer also applies to HyperlinkedTranslatableModelSerializer, except it uses REST
framework’s HyperlinkedModelSerializer semantics.

3.7.3 TranslationsMixin

hvad.contrib.restframework.TranslationsMixin

This mixin is another approach to handling translations for your REST api. With TranslatableModelSeri-
alizer, a relevant language is made visible, which is perfect for translation-unaware client-side applications.
TranslationsMixin takes the other approach: it exposes all translations at once, letting the client-side appli-
cation choose or handle translations the way it wants. This is most useful for admin-type applications.

Use is very simple: mix it into a regular serializer:

from rest_framework.serializers import ModelSerializer

class BookSerializer(TranslationsMixin, ModelSerializer):
class Meta:

model = Book

obj = Book.objects.untranslated().prefetch_related('translations').get(pk=1)
serializer = BookSerializer(instance=obj)
pprint(serializer.data)
{'author': '1',
'id': 1,
'translations': {'en': {'title': 'The Little Prince'},
'fr': {'title': 'Le Petit Prince'}}}

Note: For performance, you should always prefetch the translations like in the above example, otherwise the serializer
will have to fetch them for each object independently, resulting in a large number of queries.

Writing is supported as well. It takes a dictionary of translations, the very same format it outputs. Existing translations
will be updated, missing translations will be created. Any existing translation that is not in the data will be deleted.

For convenience, you can include both the translations dictionary and translated fields in the same serializer. This can
be handy if only some parts of your application care about all the translations. For instance, a book listing might just
want the title in the preferred language, while the book editing dialog allows editing all languages. In this case, direct
translated fields will be read-only, use the translations dictionary for updating.

It is possible to override the representation of translations. This is done by specifying a custom serializer on the meta:

from rest_framework import serializers

class BookTranslationSerializer(serializers.ModelSerializer):
class Meta:

exclude = ['subtitle', 'cover']

class BookSerializer(TranslationsMixin, serializers.ModelSerializer):
class Meta:

model = Book
translations_serializer = BookTranslationSerializer

24 Chapter 3. Contents

http://www.django-rest-framework.org/api-guide/serializers/#hyperlinkedmodelserializer

Django Hvad Documentation, Release 1.8.0

In case advanced customisation of translations is required, be aware that your custom translation serializer is handed
the full object. This allows building computed fields using both translated and untranslated data.

However, it can interfer with some field types, most notable related fields, which expect the actual translation model.
Hvad handles this automatically in its default translation serializer. You can inherit this handling by making your own
translation serializer a subclass of hvad.contrib.restframework.NestedTranslationSerializer.

3.8 Frequent Questions

• Why “django-hvad”?

• How do I get the right language from the request?

• How about multilingual URI?

• How do I use hvad with MPTT?

• How do I separate translatable fields in admin?

3.8.1 Why “django-hvad”?

The project first started as “django-nani”, created by Jonas Obrist. The word nani is the romanized form of “”, which
means What?.

When Kristian Øllegaard took responsibility for updating and maintaining the project, including a major refactor of
the internals, the project was renamed to hvad, which is the Danish word for What?.

If we were to continue the trend, we would rename to django-quoi, but that is very unlikely unless Django introduces
major breaking changes in a future version.

3.8.2 How do I get the right language from the request?

In most cases, you will be using language() with no arguments in your views and forms. When used with no arguments,
it defaults to using the current language, as returned by Django’s get_language().

Therefore, having hvad use the right language is mostly a matter of having Django setting it right. Fortunately, Django
provide the tools to do this, in the form of the LocaleMiddleware. Here is a short guide to making it work.

First, the middleware must be enabled. This is done by adding 'django.middleware.locale.
LocaleMiddleware' to MIDDLEWARE_CLASSES in you settings file.

• It must come after SessionMiddleware.

• If you use the CacheMiddleware, then the LocaleMiddleware must come after that too.

• Right after those, as close to the top as possible, should the LocaleMiddleware come:

MIDDLEWARE_CLASSES = (
'django.middleware.cache.UpdateCacheMiddleware',
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.locale.LocaleMiddleware',
'django.middleware.common.CommonMiddleware',
'django.middleware.cache.FetchFromCacheMiddleware',

)

3.8. Frequent Questions 25

https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language
https://django.readthedocs.io/en/latest/ref/middleware.html#django.middleware.locale.LocaleMiddleware
https://django.readthedocs.io/en/latest/ref/middleware.html#django.contrib.sessions.middleware.SessionMiddleware

Django Hvad Documentation, Release 1.8.0

Now, the middleware will try to determine the user’s language preference. There is a detailed explanation of how it
proceeds in Django documentation.

Hvad will happily follow the language discovered by the middleware. Although this will usually be enough, you may
sometimes want to force the language. Either on a specific request by explicitly passing a language code to language(),
or by changing the current language. The later is done through activate().

3.8.3 How about multilingual URI?

We will assume the URI we want to be multilingual are made of two kind of components: static components, and
dynamic components. We want to translate both kind:

• Static components, through ugettext_lazy().

• Dynamic components, from our translatable models.

Static components

This is thoroughly documented in Django’s URL i18n documentation and does not actually involve hvad, so
this will be a short guide. It requires the LocaleMiddleware to be properly configured, so please do that first.

With this middleware active, each request will set a current language before looking up the URI in your urlconf.py.
This makes it possible to use ugettext_lazy() in your patterns, like this:

from django.conf.urls import url
from django.utils.translation import ugettext_lazy as _

urlpatterns = [
url(_(r'^en/news/(?P<year>[0-9]{4})/(?P<month>[0-9]{2})/(?P<slug>.*)'),

views.NewsView, name='news-detail'),
]

The pattern would then appear in the list of translatable string, making it possible to add, for instance, a translation
that would read ^fr/actualites/(?P<year>[0-9]{4})/(?P<month>[0-9]{2})/(?P<slug>.*)

Note: Notice the language code at the beginning. Although not required, prefixing your URI with it makes the life
much easier to the LocaleMiddleware.

Dynamic components

We translated the static parts of the URI with Django mechanics. What now? Well, if we touch nothing, everything
will work fine: the language of the user will be used for URI resolution, and then hvad’s language() will follow the
same. Database queries will filter on the user’s language by default, and your view will 404 if nothing is found in that
language.

Now, in some instances, the language might not be known. Because your URI does not include a language code, or
because you want to find objects regardless of the user’s language. Maybe based on a translatable slug. This can be
done by querying with language('all'):

from django.views.generic.base import TemplateView

class NewsView(TemplateView):
def get(self, request, *args, **kwargs):

(continues on next page)

26 Chapter 3. Contents

https://django.readthedocs.io/en/latest/topics/i18n/translation.html#how-django-discovers-language-preference
https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.activate
https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.ugettext_lazy
https://django.readthedocs.io/en/latest/topics/i18n/translation.html#url-internationalization
https://django.readthedocs.io/en/latest/ref/middleware.html#django.middleware.locale.LocaleMiddleware
https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.ugettext_lazy
https://django.readthedocs.io/en/latest/ref/middleware.html#django.middleware.locale.LocaleMiddleware

Django Hvad Documentation, Release 1.8.0

(continued from previous page)

slug = kwargs['slug']
obj = News.objects.language('all').get(published=True, slug=slug)

context = self.get_context_data(news=obj, language=obj.language_code)
return self.render_to_response(context)

This view will find the news given its slug, regardless of which language it is in. It will display it in the language it is
found with. It would be possible to force it to be in the user’s preferred language by adding another query:

obj = News.objects.language('all').get(published=True, slug=slug)
try:

Try to replace obj with a version in current user's language
obj = News.objects.language().get(pk=obj.pk)

except News.DoesNotExist:
No translation for user's language, stick with that of the slug
pass

Note: Note those examples assume slugs are unique amongst all news of all languages.

3.8.4 How do I use hvad with MPTT?

Note: Since version 0.5, hvad no longer uses a custom metaclass, making the old metaclass workaround unneeded.

The mptt application implements Modified Preorder Tree Traversal for Django models. If you have any model in your
project that is organized in a hierarchy of items, you should be using it.

MPTT and hvad can cooperate pretty well by merging the TranslationManager from hvad with the
MPTTManager from MPTT. Doing so is relatively straightforward:

class FolderManager(TranslationManager, MPTTManager):
use_for_related_fields = True

class Folder(MPTTModel, TranslatableModel):
...
objects = FolderManager()

The same principle would work with a custom queryset too, but MPTT does not define one.

3.8.5 How do I separate translatable fields in admin?

This comes froms #68.

We need to separate the fields in fieldsets. Unfortunately, technical restrictions on Django < 1.6 make support
for translated fields directly on ModelAdmin difficult. Therefore, it must be worked around by defining a custom
get_fieldsets() as such:

class MyModelAdmin(TranslatableAdmin):
... other admin stuff
def get_fieldsets(self, request, obj=None):

return (

(continues on next page)

3.8. Frequent Questions 27

https://github.com/django-mptt/django-mptt/
https://github.com/KristianOellegaard/django-hvad/issues/68
https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.get_fieldsets

Django Hvad Documentation, Release 1.8.0

(continued from previous page)

(_('Common fields'), {
'fields': ('owner', 'is_published',),

}),
(_('Translated fields'), {

'fields': ('name', 'slug', 'description',),
}),

)

The model admin will then be generated with two fieldsets, one for common fields and one for translated fields. At
this point though, language tabs still appear at the top, with both fieldsets beneath. This can be changed by providing
a custom template for rendering the form. This is a 2-step process. First, we specify a custom template on the admin:

class MyModelAdmin(TranslatableAdmin):
... ohter admin stuff
change_form_template = 'myapp/change_form.html'

Then we create the template, by extending the base admin change form. Only, we place the language tabs where we
want them to be:

{% extends "admin/change_form.html" %}

{% block field_sets %}
{% for fieldset in adminform %}

{% include "admin/includes/fieldset.html" %}
{% if forloop.first %}

{% include "admin/hvad/includes/translation_tabs.html" %}
{% endif %}

{% endfor %}
{% endblock %}

In that example, the language tabs will end up in between the first and second fieldsets. We are mostly done, all we
miss is some CSS rules to have the tabs look right. We may simply copy-paste the extrahead block straight from
hvad/templates/admin/hvad/change_form.html.

Note: Remember that language tabs are links to other pages. This means that clicking them without saving the form
will not save anything, not even common fields. Basically, a new, fresh form will be built from DB values. If adding
new object, common fields will be blanked as well.

3.9 Release Notes

3.9.1 1.8.0 - current release

Released on April 28, 2017

Python and Django versions supported:

• Support for Django 1.10 was added.

• Django 1.7 is no longer supported.

• So, as a reminder, supported Django versions for this release are: 1.8 LTS, 1.9, 1.10.x (for x 1) and 1.11.

New features:

28 Chapter 3. Contents

Django Hvad Documentation, Release 1.8.0

• Automatic loading of translations on attribute access can now be disabled, by setting
HVAD["AUTOLOAD_TRANSLATIONS"] to False. This will prevent hvad from initiating database
queries. Accessing translatable attributes with no translation loaded will then raise an AttributeError.

• It is possible to automatically install TranslationQueryset as the default queryset for all translatable mod-
els, by setting HVAD["USE_DEFAULT_QUERYSET"] to True. Specifically, it changes default_class
to be a TranslationQueryset instead of a QuerySet. See the section about overriding the default
queryset for advantages and caveats of doing so.

• Field declaration for internal language_code attribute can be overriden. — #332.

Compatibility warnings:

• All settings have been moved to a unique HVAD dictionary. Please update your django settings accordingly.

• Deprecated class FallbackQueryset has been removed. Using it along with FallbackQueryset.
use_fallbacks() did not work on Django 1.9 and newer and was deprecated on older versions. Using it
without that method made it behave like a regular queryset. So as a summary,

– Code using .untranslated().use_fallbacks() must be replaced with .language().fallbacks().

– All other uses of FallbackQueryset can be safely replaced with a regular QuerySet.

• Translated admin no longer shows objects lacking a translation. This was already the case on Django 1.9 and
newer, and this behavior now extends to all Django versions. Such objects should not happen anyway, and throw
a warning when encountered.

Fixes:

• Increase speed of translated attribute access by ~30%, by avoiding a method call when a translation is loaded.

• Attempting to use a reserved name for a translated field now raises an ImproperlyConfigured exception
instead of silently ignoring the field.

• Instances created by serializers using TranslatableModelMixin in normal, non-enforcing mode can no
longer be created without a translation. — #322.

3.9.2 1.7.0

Released on February 8, 2017

New features:

• Support for defer() and only() was added. Note that deferring all translated fields will not result in
translation being skipped, because 1) it needs to be inspected for language resolution and 2) loaded translation
language must be fixed at query time. Support is limited to immediate fields at the moment, ie it is not possible
to defer fields of additionals models loaded through select_related().

Compatibility warnings:

• Internal admin method TranslatableAdmin.get_available_languages() is deprecated and will
be removed. Use TranslatableModel.get_available_languages() instead.

• Internal admin method TranslatableAdmin.get_language_tabs() signature changed.

Fixes:

• Do not consider annotations when looking up translatable query fields. Fixes errors that could arise when using
some annotation names. — #303.

• Accept special value __all__ for form field list, as a synonym for None, meaning include all known fields.
— #313.

• Fix translation deletion links that were improperly generated when using inline change forms. — #317.

3.9. Release Notes 29

https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://github.com/KristianOellegaard/django-hvad/issues/332
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ImproperlyConfigured
https://github.com/KristianOellegaard/django-hvad/issues/322
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.defer
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.only
https://github.com/KristianOellegaard/django-hvad/issues/303
https://github.com/KristianOellegaard/django-hvad/issues/313
https://github.com/KristianOellegaard/django-hvad/issues/317

Django Hvad Documentation, Release 1.8.0

3.9.3 1.6.0

Released on September 6, 2016

Python and Django versions supported:

• Support for Django 1.10 was added. It requires version 1.10.1 or better.

• So, as a reminder, supported Django versions for this release are: 1.7, 1.8 LTS, 1.9, 1.10.x (for x 1).

Fixes:

• No longer set master to NULL before clearing translations when using delete_translations(). This
only triggers one query instead of two, and allows enforcing non-null foreign key at the database level.

• Django system checks are now run in the test suite in addition to hvad’s tests.

3.9.4 1.5.1

Released on May 23, 2016

Fixes:

• Filter out m2m and generic fields in update_translation() so it does not bite when using (unsupported)
m2m fields or generic relations in a translation — #285.

3.9.5 1.5.0

Released on February 2, 2016

Python and Django versions supported:

• Django 1.4 LTS is no longer supported.

• So, as a reminder, supported Django versions for this release are: 1.7, 1.8 LTS, 1.9.

New features:

• It is now possible to specify a custom translation base model, allowing advanced translation manipulation, such
as controlling their loading with from_db().

• Translated model’s save() method now accepts translated field names in update_fields. Also, if only
translated fields, or only untranslated fields are specified in update_fields, the extra query will be skipped.

• Support for third parameter on ModelAdmin’s get_object() method was added.

• Experimental support for using language(‘all’) together with select_related() is being introduced.
Please check the generated queries if you use it. Feedback is appreciated.

Compatibility Warnings:

• Saving of translations now happens in the model’s save() method. It used to happen in the post_save
signal.

• TranslationsMixin now splits the update into update and update_translation methods. The
former is called once per save, and uses the latter as many times as required to update all translations.

Fixes:

• Translation deletion URIs are no longer broken on Django 1.9 — #279.

• REST framework translation support now uses update_fields to reduce the number of queries when up-
dating an object.

30 Chapter 3. Contents

https://github.com/KristianOellegaard/django-hvad/issues/285
https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.from_db
https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.save
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.select_related
https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.save
https://github.com/KristianOellegaard/django-hvad/issues/279

Django Hvad Documentation, Release 1.8.0

• REST framework translation support no longer breaks when using PrimaryKeyRelatedField and
TranslationsMixin together — #278.

• Admin no longer uses deprecated patterns function — #268.

3.9.6 1.4.0

Released on November 10, 2015

Python and Django versions supported:

• Support for Python 3.5 was added.

• Support for Django 1.9 was added.

• Django 1.6 is no longer officially supported.

• Django 1.4 LTS has reached its end of life, and support will be dropped in hvad 1.5.

• So, as a reminder, supported versions for this release are: 1.4 LTS, 1.7, 1.8 LTS, 1.9.

Compatibility Warnings:

• As a result of the annotations fix (see below), applications that worked around annotate()’s shortcomings on
translation querysets are likely to break, as annotate() has been fixed. The workarounds should be simply
removed.

• Method FallbackQueryset.use_fallbacks() is not supported on Django 1.9 and newer (and depre-
cated on other versions, see below). Please use TranslationQueryset.fallbacks() instead.

• Translated admin no longer shows objects lacking a translation, starting from Django 1.9. This behavior will
be extended to all Django versions in the next release. Such objects should not happen anyway, and throw a
warning when encountered.

• Translation model building has been refactored. It is functionally equivalent to its previous implementation (it
passes the exact same test suite), but code depending on the internals and inner implementation details could
break.

Deprecation List:

• Method FallbackQueryset.use_fallbacks() is now deprecated on Django 1.6 and newer. The
plan is to completely drop FallbackQueryset in the near future, and let TranslationManager.
untranslated() default to returning a plain Django queryset, thus enabling MyModel.objects.
untranslated() to give access to all features a plain Django queryset supports.

For queries that need fallbacks, the use_fallbacks() method has long been superseded by Translation-
Queryset.fallbacks(), which is better tested, uses simpler code yet supports more features. Please update your
queries accordingly.

MyModel.objects.untranslated().use_fallbacks('en', 'ja', 'fr') should be rewrit-
ten as MyModel.objects.language('en').fallbacks('ja', 'fr'), or even MyModel.
objects.language().fallbacks() to have the query use your application’s language settings auto-
matically.

Fixes:

• Annotations added to a TranslationQueryset using the annotate() method no longer end up on the
translation cache with a master__ prefix.

• Specifying translation fields in unique_together on translatable models no longer causes Django to gener-
ate incorrect migrations. — #260.

3.9. Release Notes 31

https://github.com/KristianOellegaard/django-hvad/issues/278
https://github.com/KristianOellegaard/django-hvad/issues/268
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.annotate
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.annotate
https://github.com/KristianOellegaard/django-hvad/issues/260

Django Hvad Documentation, Release 1.8.0

• When no Meta options are set on a TranslatableModelForm, the auto-created one now correctly inherits that of
its first base class that has one set — #262.

• Using language('all') together with values() no longer breaks — #264.

3.9.7 1.3.0

Released on July 29, 2015

This release is a collection of fixes and improvements, some of which may introduce minor compatibility issues.
Please make sure you fix any deprecation warnings before upgrading to avoid those issues.

Python and Django versions supported:

• Django 1.5 is no longer officially supported.

• Django 1.6 has reached its end of life, and support will be dropped in hvad 1.4.

• As a reminder, Django 1.4 is still supported, so supported versions for this release are: 1.4, 1.6, 1.7, 1.8.

New Features:

• Russian and Latvian translations are now included, thanks to Juris Malinens — #248.

Compatibility Warnings: deprecated features pending removal in 1.3 have been removed. Most notably:

• Calling save() on an invalid form now raises an assertion exception.

• Classes TranslatableModelBase, TranslationFallbackManager, TranslatableBaseView
and method TranslationManager.using_translations() no longer exist.

• Deprecated view methods and context modifiers now raise an assertion exception.

Fixes:

• Lift Django restrictions on translated fields in Meta.unique_together and Meta.index_together
— #252.

• Properly forward model validation methods to translation validation methods, so that model validation detects
constraint violations on the translation as well. Fixes duplicate detection in admin for unique constraints on
translations — #251.

• Detect name clash between translated and non-translated fields — #240.

• Validate that at least one translation is provided when deserializing objects in TranslationsMixin— #256.

• Fix handling of model edition from an admin popup in Django 1.7 and newer — #253.

• Generate proper ORM structures for fallbacks. Avoids table relabeling breaking queries, for instance when
using update() or feeding a queryset to another queryset — #250.

3.9.8 1.2.2

Released on June 3, 2015

Fixes:

• Properly handle language_code in Meta.unique_together and Meta.index_together— #244.

32 Chapter 3. Contents

https://github.com/KristianOellegaard/django-hvad/issues/262
https://github.com/KristianOellegaard/django-hvad/issues/264
https://github.com/KristianOellegaard/django-hvad/issues/248
https://github.com/KristianOellegaard/django-hvad/issues/252
https://github.com/KristianOellegaard/django-hvad/issues/251
https://github.com/KristianOellegaard/django-hvad/issues/240
https://github.com/KristianOellegaard/django-hvad/issues/256
https://github.com/KristianOellegaard/django-hvad/issues/253
https://github.com/KristianOellegaard/django-hvad/issues/250
https://github.com/KristianOellegaard/django-hvad/issues/244

Django Hvad Documentation, Release 1.8.0

3.9.9 1.2.1

Released on April 29, 2015

Fixes:

• Make passing the model argument to queryset’s __init__ optional. Still allow it to be passed either as a
positional or named argument — #241.

3.9.10 1.2.0

Released on March 19, 2015

This is a feature release, to push REST framework support onto the main package.

Python and Django versions supported:

• Due to this version being released early, end of support for Django 1.5 has been postponed until next release.

New features:

• Support for Django REST framework is now included. It requires REST framework version 3.1 or newer —
#220.

3.9.11 1.1.1

Released on March 5, 2015

Fixes:

• Backwards compatibility issue in get_field implementation — #233.

• Admin no longer breaks on models using another pk field than id — #231.

3.9.12 1.1.0

Released on February 17, 2015

Python and Django versions supported:

• hvad now supports Django 1.8.

• Django 1.5 has reached its end of life, and support will be dropped in hvad 1.2. Note however that Django 1.4
will still be supported.

New features:

• It is now possible to use translated fields in the unique_together and index_together settings on
TranslatableModel. They cannot be mixed in a single constraint though, as table-spanning indexes are not
supported by SQL databases.

• The annotate() method is now supported. Support is still basic for now: annotations may not access more
than one level of relation.

Compatibility warnings:

• Internal module hvad.fieldtranslator was no longer used, and was incompatible with Django 1.8. It
has been removed.

• Deprecated using_translations() has been removed. It can be safely replaced by language().

3.9. Release Notes 33

https://github.com/KristianOellegaard/django-hvad/issues/241
https://github.com/KristianOellegaard/django-hvad/issues/220
https://github.com/KristianOellegaard/django-hvad/issues/233
https://github.com/KristianOellegaard/django-hvad/issues/231
https://django.readthedocs.io/en/latest/ref/models/options.html#django.db.models.Options.unique_together
https://django.readthedocs.io/en/latest/ref/models/options.html#django.db.models.Options.index_together
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.annotate

Django Hvad Documentation, Release 1.8.0

• Deprecated TranslationFallbackManager has been removed. Please use manager’s
untranslated() method instead.

• Deprecated TranslatableModelBase metaclass has been removed. Since release 0.5, hvad does not trig-
ger metaclass conflicts anymore – #188.

• Overriding the language in QuerySet.get() and QuerySet.filter() was deprecated in release 0.5,
and has now been removed. Either use the language() method to set the correct language, or specify
language('all') to filter manually through get and filter – #182.

• TranslatableModel’s Internal attribute _shared_field_names has been removed.

Deprecation list:

• Passing unique_together or index_together as a meta option on TranslatedFields is now
deprecated and will be unsupported in release 1.3. Put them in the model’s Meta instead, alongside normal
fields.

• Calling save() on an invalid TranslatableModelForm is a bad practice and breaks on regular Django forms.
This is now deprecated, and relevant checks will be removed in release 1.3. Please check the form is valid before
saving it.

• Generic views in hvad.views have been refactored to follow Django generic view behaviors. As a result,
several non-standard methods are now deprecated. Please replace them with their Django equivalents — check
#225.

3.9.13 1.0.0

Released on December 19, 2014

Python and Django versions supported:

• Django 1.3 is no longer supported.

• Python 2.6 is no longer supported. Though it is likely to work for the time being, it has been dropped from the
tested setups.

New features:

• TranslatableModelForm has been refactored to make its behavior more consistent. As a result, it exposes two
distinct language selection modes, normal and enforce, and has a clear API for manually overriding the language
— #221.

• The new features of modelform_factory() introduced by Django 1.6 and 1.7 are now available on trans-
latable_modelform_factory as well — #221.

• TranslationQueryset now has a fallbacks() method when running on Django 1.6 or newer, allowing the queryset
to use fallback languages while retaining all its normal functionalities – #184.

• Passing additional select items in method extra() is now supported. — #207.

• It is now possible to use TranslationQueryset as default queryset for translatable models. — #207.

• A lot of tests have been added, hvad now has 100% coverage on its core modules. Miscellaneous glitches found
in this process were fixed.

• Added MySQL to tested database backends on Python 2.7.

Compatibility warnings:

• TranslatableModelForm has been refactored to make its behavior more consistent. The core API has not
changed, but edge cases are now clearly specified and some inconsistencies have disappeared, which could
create issues, especially:

34 Chapter 3. Contents

https://github.com/KristianOellegaard/django-hvad/issues/188
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.get
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.filter
https://github.com/KristianOellegaard/django-hvad/issues/182
https://django.readthedocs.io/en/latest/topics/db/models.html#meta-options
https://github.com/KristianOellegaard/django-hvad/issues/225
https://github.com/KristianOellegaard/django-hvad/issues/221
https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.modelform_factory
https://github.com/KristianOellegaard/django-hvad/issues/221
https://github.com/KristianOellegaard/django-hvad/issues/184
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.extra
https://github.com/KristianOellegaard/django-hvad/issues/207
https://github.com/KristianOellegaard/django-hvad/issues/207

Django Hvad Documentation, Release 1.8.0

– Direct use of the form class, without passing through the factory method. This used to have an unspecified
behavior regarding language selection. Behavior is now well-defined. Please ensure it works the way you
expect it to.

Fixes:

• TranslatableModelForm’s clean() can now return None as per the new semantics introduced in Django 1.7.
— #217.

• Using Q object logical combinations or exclude() on a translation-aware manager returned by
get_translation_aware_manager() no longer yields wrong results.

• Method get_or_create() now properly deals with Django 1.6-style transactions.

3.9.14 0.5.2

Released on November 8, 2014

Fixes:

• Admin does not break anymore on M2M fields on latest Django versions. — #212.

• Related fields’s clear() method now works properly (it used to break on MySQL, and was inefficient on
other engines) — #212.

3.9.15 0.5.1

Released on October 24, 2014

Fixes:

• Ecountering a regular (un-translatable) model in a deep select_related does not break anymore. — #206.

• Language tabs URI are now correctly generated when changelist filters are used. — #203.

• Admin language tab selection is no longer lost when change filters are active. — #202.

3.9.16 0.5.0

Released on September 11, 2014

New features:

• New translationformset_factory and its companion BaseTranslationFormSet allow building a formset
to work on an instance’s translations. Please have at look at its detailed documentation – #157.

• Method language() now accepts the special value 'all', allowing the query to consider all translations –
#181.

• Django 1.6+’s new datetimes() method is now available on TranslationQueryset too – #175.

• Django 1.6+’s new earliest() method is now available on TranslationQueryset.

• Calls to language(), passing None to use the current language now defers language resolution until the
query is evaluated. It can now be used in form definitions directly, for instance for passing a custom queryset to
ModelChoiceField – #171.

• Similarly, use_fallbacks() can now be passed None as one of the fallbacks, and it will be replaced with
current language at query evaluation time.

3.9. Release Notes 35

https://django.readthedocs.io/en/latest/ref/forms/api.html#django.forms.Form.clean
https://github.com/KristianOellegaard/django-hvad/issues/217
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.exclude
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.get_or_create
https://github.com/KristianOellegaard/django-hvad/issues/212
https://django.readthedocs.io/en/latest/ref/models/relations.html#django.db.models.fields.related.RelatedManager.clear
https://github.com/KristianOellegaard/django-hvad/issues/212
https://github.com/KristianOellegaard/django-hvad/issues/206
https://github.com/KristianOellegaard/django-hvad/issues/203
https://github.com/KristianOellegaard/django-hvad/issues/202
https://github.com/KristianOellegaard/django-hvad/issues/157
https://github.com/KristianOellegaard/django-hvad/issues/181
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.datetimes
https://github.com/KristianOellegaard/django-hvad/issues/175
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.earliest
https://django.readthedocs.io/en/latest/ref/forms/fields.html#django.forms.ModelChoiceField
https://github.com/KristianOellegaard/django-hvad/issues/171

Django Hvad Documentation, Release 1.8.0

• All queryset classes used by TranslationManager can now be customized thanks to the new
fallback_class and default_class attributes.

• Abstract models are now supported. The concrete class must still declare a TranslatedFields instance,
but it can be empty – #180.

• Django-hvad messages are now available in Italian – #178.

• The Meta.ordering model setting is now supported on translatable models. It accepts both translated and
shared fields – #185, #12.

• The select_related() method is no longer limited to 1 level depth – #192.

• The select_related() method semantics is now consistent with that of regular querysets. It supports
passing None to clear the list and mutiple calls mimic Django behavior. That is: cumulative starting from
Django 1.7 and substitutive before – #192.

Deprecation list:

• The deprecated nani module was removed.

• Method using_translations() is now deprecated. It can be safely replaced by language() with no
arguments.

• Setting NANI_TABLE_NAME_SEPARATOR was renamed to HVAD_TABLE_NAME_SEPARATOR. Using the
old name will still work for now, but issue a deprecation warning, and get removed in next version.

• CSS class nani-language-tabs in admin templates was renamed to hvad-language-tabs. Entities
will bear both classes until next version.

• Private _real_manager and _fallback_manager attributes of TranslationQueryset have been
removed as the indirection served no real purpose.

• The TranslationFallbackManager is deprecated and will be removed in next release. Please use man-
ager’s untranslated() method instead.

• The TranslatableModelBase metaclass is no longer necessary and will be removed in next release. hvad
no longer triggers metaclass conflicts and TranslatableModelBase can be safely dropped – #188.

• Overriding the language in QuerySet.get() and QuerySet.filter() is now deprecated. Either use the
language() method to set the correct language, or specify language('all') to filter manually through
get and filter – #182.

Fixes:

• Method latest() now works when passed no field name, properly getting the field name from the model’s
Meta.get_latest_by option.

• FallbackQueryset now leverages the better control on queries allowed in Django 1.6 and newer to use
only one query to resolve fallbacks. Old behavior can be forced by adding HVAD_LEGACY_FALLBACKS =
True to your settings.

• Assigning value to translatable foreign keys through its _id field no longer results in assigned value being
ignored – #193.

• Tests were refactored to fully support PostgreSQL – #194

3.9.17 0.4.1

Released on June 1, 2014

Fixes:

• Translations no longer remain in database when deleted depending on the query that deleted them – #183.

36 Chapter 3. Contents

https://github.com/KristianOellegaard/django-hvad/issues/180
https://github.com/KristianOellegaard/django-hvad/issues/178
https://django.readthedocs.io/en/latest/ref/models/options.html#django.db.models.Options.ordering
https://github.com/KristianOellegaard/django-hvad/issues/185
https://github.com/KristianOellegaard/django-hvad/issues/12
https://github.com/KristianOellegaard/django-hvad/issues/192
https://github.com/KristianOellegaard/django-hvad/issues/192
https://github.com/KristianOellegaard/django-hvad/issues/188
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.get
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.filter
https://github.com/KristianOellegaard/django-hvad/issues/182
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.latest
https://django.readthedocs.io/en/latest/ref/models/options.html#django.db.models.Options.get_latest_by
https://github.com/KristianOellegaard/django-hvad/issues/193
https://github.com/KristianOellegaard/django-hvad/issues/194
https://github.com/KristianOellegaard/django-hvad/issues/183

Django Hvad Documentation, Release 1.8.0

• get_available_languages() now uses translations if they were prefetched with
prefetch_related(). Especially, using all_translations() in list_display no longer
results in one query per item, as long as translations were prefetched – #179, #97.

3.9.18 0.4.0

Released on May 19, 2014

New Python and Django versions supported:

• django-hvad now supports Django 1.7 running on Python 2.7, 3.3 and 3.4.

• django-hvad now supports Django 1.6 running on Python 2.7 and 3.3.

New features:

• TranslationManager’s queryset class can now be overriden by setting its queryset_class attribute.

• Proxy models can be used with django-hvad. This is a new feature, please use with caution and report any issue
on github.

• TranslatableAdmin’s list display now has direct links to each available translation.

• Instance’s translated fields are now available to the model’s save() method when saving a
TranslatableModelForm.

• Accessing a translated field on an untranslated instance will now raise an AttributeError with a helpful
message instead of letting the exception bubble up from the ORM.

• Method in_bulk() is now available on TranslationQueryset.

Deprecation list:

• Catching ObjectDoesNotExist when accessing a translated field on an instance is deprecated. In case no
translation is loaded and none exists in database for current language, an AttributeError is raised instead.
For the transition, both are supported until next release.

Removal of the old 'nani' aliases was postponed until next release.

Fixes:

• Fixed an issue where TranslatableAdmin could overwrite the wrong language while saving a form.

• lazy_translation_getter() now tries translations in LANGUAGES order once it has failed with current
language and site’s main LANGUAGE_CODE.

• No more deprecation warnings when importing only from hvad.

• TranslatableAdmin now generates relative URLs instead of absolute ones, enabling it to work behind
reverse proxies.

• django-hvad does not depend on the default manager being named ‘objects’ anymore.

• Q objects now work properly with TranslationQueryset.

3.9.19 0.3

New Python and Django versions supported:

• django-hvad now supports Django 1.5 running on Python 2.6 and 2.6.

Deprecation list:

• Dropped support for django 1.2.

3.9. Release Notes 37

https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.prefetch_related
https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.list_display
https://github.com/KristianOellegaard/django-hvad/issues/179
https://github.com/KristianOellegaard/django-hvad/issues/97
https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.save
https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError
https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.ObjectDoesNotExist
https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGE_CODE

Django Hvad Documentation, Release 1.8.0

• In next release, the old ‘nani’ module will be removed.

3.9.20 0.2

The package is now called ‘hvad’. Old imports should result in an import error.

Fixed django 1.4 support

Fixed a number of minor issues

3.9.21 0.1.4 (Alpha)

Released on November 29, 2011

• Introduces lazy_translation_getter()

3.9.22 0.1.3 (Alpha)

Released on November 8, 2011

• A new setting was introduced to configure the table name separator, NANI_TABLE_NAME_SEPARATOR.

Note: If you upgrade from an earlier version, you’ll have to rename your tables yourself (the general template
is appname_modelname_translation) or set NANI_TABLE_NAME_SEPARATOR to the empty string
in your settings (which was the implicit default until 0.1.0)

3.9.23 0.0.4 (Alpha)

3.9.24 0.0.3 (Alpha)

Released on May 26, 2011.

• Replaced our ghetto fallback querying code with a simplified version of the logic used in Bert Constantins
django-polymorphic, all credit for our now better FallbackQueryset code goes to him.

• Replaced all JSON fixtures for testing with Python fixtures, to keep tests maintainable.

• Nicer language tabs in admin thanks to the amazing help of Angelo Dini.

• Ability to delete translations from the admin.

• Changed hvad.admin.TranslatableAdmin.get_language_tabs signature.

• Removed tests from egg.

• Fixed some tests possibly leaking client state information.

• Fixed a critical bug in hvad.forms.TranslatableModelForm where attempting to save a translated model with a
relation (FK) would cause IntegrityErrors when it’s a new instance.

• Fixed a critical bug in hvad.models.TranslatableModelBase where certain field types on models would break the
metaclass. (Many thanks to Kristian Oellegaard for the fix)

• Fixed a bug that prevented abstract TranslatableModel subclasses with no translated fields.

38 Chapter 3. Contents

https://github.com/bconstantin/django_polymorphic

Django Hvad Documentation, Release 1.8.0

3.9.25 0.0.2 (Alpha)

Released on May 16, 2011.

• Removed language code field from admin.

• Fixed admin ‘forgetting’ selected language when editing an instance in another language than the UI language
in admin.

3.9.26 0.0.1 (Alpha)

Released on May 13, 2011.

• First release, for testing purposes only.

3.10 Contact and support channels

• Github: https://github.com/KristianOellegaard/django-hvad

3.11 How to contribute

3.11.1 Running the tests

Common Setup

• virtualenv env

• source env/bin/activate

• pip install django sphinx djangorestframework

Postgres Setup

Additional to the steps above, install psycopg2 using pip and have a postgres server running that you have access to
with a user that can create databases.

Mysql Setup

Additional to the steps above, install mysql-python using pip and have a mysql server running that you have access
to with a user that can create databases.

Run the test

• python runtests.py

Optionally, prefix it with a environment variable called DATBASE_URL, for example for a Postgres server running on
myserver.com on port 5432 with the user username and password password and database name hvad:

• DATABASE_URL=postgres://username:password@myserver.com:5432/hvad python
runtests.py

3.10. Contact and support channels 39

https://github.com/KristianOellegaard/django-hvad

Django Hvad Documentation, Release 1.8.0

If in doubt, you can check .travis.yml for some examples.

3.11.2 Contributing Code

If you want to contribute code, one of the first things you should do is read the Internal API Documentation. It was
written for developers who want to understand how things work.

Patches can be sent as pull requests on Github to https://github.com/KristianOellegaard/django-hvad.

Code Style

The PEP 8 coding guidelines should be followed when contributing code to this project.

Patches must include unittests that fully cover the changes in the patch.

Patches must contain the necessary changes or additions to both the internal and public documentation.

If you need help with any of the above, feel free to Contact and support channels us.

3.11.3 Contributing Documentation

If you wish to contribute documentation, be it for fixes of typos and grammar or to cover the code you’ve written for
your patch, or just generally improve our documentation, please follow the following style guidelines:

• Documentation is written using reStructuredText and Sphinx.

• Text should be wrapped at 80 characters per line. Only exception are over-long URLs that cannot fit on one line
and code samples.

• The language does not have to be perfect, but please give your best.

• For section headlines, please use the following style:

– # with overline, for parts

– * with overline, for chapters

– =, for sections

– -, for subsections

– ^, for subsubsections

– ", for paragraphs

3.12 Internal API Documentation

3.12.1 About this part of the documentation

Warning: All APIs described in this part of the documentation which are not mentioned in the public API
documentation are internal and are subject to change without prior notice. This part of the documentation is for
developers who wish to work on django-hvad, not with it. It may also be useful to get a better insight on how
things work and may proof helpful during troubleshooting.

40 Chapter 3. Contents

https://github.com/KristianOellegaard/django-hvad
https://www.python.org/dev/peps/pep-0008
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org

Django Hvad Documentation, Release 1.8.0

3.12.2 Contents

This part of the documentation is grouped by file, not by topic.

General information on django-hvad internals

How it works

Model Definition

Function hvad.models.prepare_translatable_model() is invoked by Django metaclass using
class_prepared signal. It scans all attributes on the model defined for instances of hvad.models.
TranslatedFields, and if it finds one, sets the respective options onto meta.

TranslatedFields both creates the Translations Model and makes a foreign key from that model to point to the
Shared Model which has the name of the attribute of the TranslatedFields instance as related name.

In the database, two tables are created:

• The table for the Shared Model with the normal Django way of defining the table name.

• The table for the Translations Model, which if not specified otherwise in the options (meta) of the Translations
Model will have the name of the database table of the Shared Model suffixed by _translations as database
table name.

Queries

The main idea of django-hvad is that when you query the Shared Model using the Django ORM, what actually happens
behind the scenes (in the queryset) is that it queries the Translations Model and selects the relation to the Shared Model.
This means that model instances can only be queried if they have a translation in the language queried in, unless an
alternative manager is used, for example by using untranslated().

Due to the way the Django ORM works, this approach does not seem to be possible when querying from a Normal
Model, even when using hvad.utils.get_translation_aware_manager() and therefore in that case we
just add extra filters to limit the lookups to rows in the database where the Translations Model row existist in a
specific language, using <translations_accessor>__language_code=<current_language>. This
is suboptimal since it means that we use two different ways to query translations and should be changed if possible to
use the same technique like when a Translated Model is queried.

A word on caching

Throughout this documentation, caching of translations is mentioned a lot. By this we don’t mean proper caching
using the Django cache framework, but rather caching the instance of the Translations Model on the instance of the
Shared Model for easier access. This is done by setting the instance of the Translations Model on the attribute defined
by the translations_cache on the Shared Model’s options (meta).

hvad.admin

hvad.admin.translatable_modelform_factory(model, form=TranslatableModelForm,
fields=None, exclude=None, form-
field_callback=None)

The same as django.forms.models.modelform_factory() but uses type instead of django.
forms.models.ModelFormMetaclass to create the form.

3.12. Internal API Documentation 41

https://django.readthedocs.io/en/latest/ref/signals.html#django.db.models.signals.class_prepared
https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.modelform_factory

Django Hvad Documentation, Release 1.8.0

TranslatableAdmin

class hvad.admin.TranslatableAdmin
A subclass of django.contrib.admin.ModelAdmin to be used for hvad.models.
TranslatableModel subclasses.

query_language_key
The GET parameter to be used to switch the language, defaults to 'language', which results in GET
parameters like ?language=en.

form
The form to be used for this admin class, defaults to hvad.forms.TranslatableModelForm and
if overwritten should always be a subclass of that class.

change_form_template
We use 'admin/hvad/change_form.html' here which extends the correct template using the
logic from django admin, see get_change_form_base_template(). This attribute should never
change.

get_form(self, request, obj=None, **kwargs)
Returns a form created by translatable_modelform_factory().

all_translations(self, obj)
A helper method to be used in list_display to show available languages.

render_change_form(self, request, context, add=False, change=False, form_url=”, obj=None)
Injects title, language_tabs and base_template into the context before calling the
render_change_form() method on the super class. title just appends the cur-
rent language to the end of the existing title in the context. language_tabs is
the return value of get_language_tabs(), base_template is the return value of
get_change_form_base_template().

queryset(self, request)
Calls untranslated() on the queryset returned by the call to the super class and returns that queryset.
This allows showing all objects, even if they have no translation in current language, at the cost of more
database queries.

_language(self, request)
Returns the currently active language by trying to get the value from the GET parameters of the request
using query_language_key or if that’s not available, use get_language().

get_language_tabs(self, request, available_languages)
Returns a list of triples. The triple contains the URL for the change view for that language, the verbose
name of the language and whether it’s the current language, available or empty. This is used in the template
to show the language tabs.

get_change_form_base_template(self)
Returns the appropriate base template to be used for this model. Tries the following templates:

• admin/<applabel>/<modelname>/change_form.html

• admin/<applabel>/change_form.html

• admin/change_form.html

42 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin
https://django.readthedocs.io/en/latest/ref/contrib/admin/index.html#django.contrib.admin.ModelAdmin.list_display
https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language

Django Hvad Documentation, Release 1.8.0

hvad.descriptors

BaseDescriptor

class hvad.descriptors.BaseDescriptor
Base class for the descriptors, should not be used directly.

opts
The options (meta) of the model.

translation(self, instance)
Get the cached translation object on an instance. If no translation is cached yet, use the
get_language() function to get the current language, load it from the database and cache it on the
instance.

If no translation is cached, and no translation exists for current language, raise an AttributeError.

TranslatedAttribute

class hvad.descriptors.TranslatedAttribute
Standard descriptor for translated fields on the Shared Model.

name
The name of this attribute

opts
The options (meta) of the model.

__get__(self, instance, instance_type=None)
Gets the attribute from the translation object using BaseDescriptor.translation(). If no in-
stance is given (used from the model instead of an instance) it returns the field object itself, allowing
introspection of the model.

Starting from Django 1.7, calling getattr() on a translated field before the App Registry is initialized
raises an AttributeError.

__set__(self, instance, value)
Sets the value on the attribute on the translation object using BaseDescriptor.translation() if
an instance is given, if no instance is given, raises an AttributeError.

__delete__(self, instance)
Deletes the attribute on the translation object using BaseDescriptor.translation() if an in-
stance is given, if no instance is given, raises an AttributeError.

LanguageCodeAttribute

class hvad.descriptors.LanguageCodeAttribute
The language code descriptor is different than the other fields, since it’s readonly. The getter is inherited from
TranslatedAttribute.

__set__(self, instance, value)
Raises an attribute error.

__delete__(self, instance)
Raises an attribute error.

3.12. Internal API Documentation 43

https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language
https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError
https://docs.python.org/2.7/library/functions.html#getattr
https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError
https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError
https://docs.python.org/2.7/library/exceptions.html#exceptions.AttributeError

Django Hvad Documentation, Release 1.8.0

hvad.exceptions

exception hvad.exceptions.WrongManager
Raised when trying to access the related manager of a foreign key pointing from a normal model
to a translated model using the standard manager instead of one returned by hvad.utils.
get_translation_aware_manager(). Used to give developers an easier to understand exception
than a django.core.exceptions.FieldError. This exception is raised by the hvad.utils.
SmartGetFieldByName which gets patched onto the options (meta) of translated models.

hvad.fieldtranslator

hvad.fieldtranslator.TRANSLATIONS
Constant to identify Shared Model classes.

hvad.fieldtranslator.TRANSLATED
Constant to identify Translations Model classes.

hvad.fieldtranslator.NORMAL
Constant to identify normal models.

hvad.fieldtranslator.MODEL_INFO
Caches the model informations in a dictionary with the model class as keys and the return value of
_build_model_info() as values.

hvad.fieldtranslator._build_model_info(model)
Builds the model information dictionary for a model. The dictionary holds three keys: 'type', 'shared'
and 'translated'. 'type' is one of the constants TRANSLATIONS, TRANSLATED or NORMAL.
'shared' and 'translated' are a list of shared and translated fieldnames. This method is used by
get_model_info().

hvad.fieldtranslator.get_model_info(model)
Returns the model information either from the MODEL_INFO cache or by calling _build_model_info().

hvad.fieldtranslator._get_model_from_field(starting_model, fieldname)
Get the model the field fieldname on starting_model is pointing to. This function uses
get_field_by_name() on the starting model’s options (meta) to figure out what type of field it is and
what the target model is.

hvad.fieldtranslator.translate(querykey, starting_model)
Translates a querykey (eg 'myfield__someotherfield__contains') to be language aware by span-
ning the translations relations wherever necessary. It also figures out what extra filters to the Translations Model
tables are necessary. Returns the translated querykey and a list of language joins which should be used to further
filter the queryset with the current language.

hvad.forms

TranslatableModelFormMetaclass

class hvad.forms.TranslatableModelFormMetaclass
Metaclass of TranslatableModelForm.

__new__(cls, name, bases, attrs)
Uses Django’s internal fields_for_model to get translated fields for model and fields declarations,
then lets Django handle the other fields. Once it is done, it merges the translated fields, preserving order.

Special handling is done to:

44 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/exceptions.html#django.core.exceptions.FieldError

Django Hvad Documentation, Release 1.8.0

• Prevent language_code from being used in any way by a field. This is because the form uses the
language_code key in the cleaned_data dictionary.

• Prevent master from being recognized as a translated field. It is still a valid field name though.

• Prevent the translations accessor from being used as a field.

TranslatableModelForm

class hvad.forms.BaseTranslatableModelForm(BaseModelForm)
The actual class supporting the features and methods, but lacking metaclass sugar. Inherited by
TranslatableModelForm to attach the metaclass. Details are documented on that class.

class hvad.forms.TranslatableModelForm(BaseTranslatableModelForm)

Main form for editing TranslatableModel instances. As with regular django Form classes, it
can be used either directly or by passing it to translatable_modelform_factory().

As an extension to regular forms, it handles translation and can be bound to a language. Binding
to a language is done by setting language on the class (not the instance), either by inheriting it
manually or using the factory function. Once bound to a language, the form is in enforce mode: all
manipulations will be done using that language exclusively.

__metaclass__
TranslatableModelFormMetaclass

language
The language the form is bound to. This is a class attribute. If present, the form is in enforce mode and
will only deal with the specified language. See each method for the exact effects.

__init__(self, data=None, files=None, auto_id=’id_%s’, prefix=None, initial=None, er-
ror_class=ErrorList, label_suffix=’:’, empty_permitted=False, instance=None)

If this class is initialized with an instance, that has a translation loaded, it updates initial to also contain
the data from the Translations Model.

If the form is not bound to a language, it will use the data from the instance. If the instance has no
translation loaded, an attempt will be made at loading the current language, and if that fails the fields will
be blank.

If the form is in enforce mode and the instance does not have the correct translation loaded, then:

• it will attempt to load it from the database.

• if that fails, it will try to use the loaded translation on the instance.

• if that fails (instance is untranslated), it will use default values.

This process results in new translations being pre-populated with data from another language. Simply pass
an instance in that language, or an untranslated instance if the behavior is not desired.

clean(self)
If the form is in enforce mode, namely if it has a language property, apply the it to cleaned_data.
As usual, the special value None is replaced by current language.

If the form is not bound to a language, this method does nothing. It is then possible to either use save()
in unbound mode or set the language code manually in cleaned_data['language_code'].

Note: A missing language is not the same as None. While None will be replaced by current language
and applied to cleaned_data, a missing language will not apply any language at all.

3.12. Internal API Documentation 45

https://django.readthedocs.io/en/latest/ref/forms/api.html#django.forms.Form

Django Hvad Documentation, Release 1.8.0

_post_clean(self)
Loads a translation appropriate to the form mode. It is the very same that will be loaded by save().
Doing it twice is needed because:

• it must be done in _post_clean so that the correct translation is available for modifications. For
instance, if the view updates some translated fields in between the call to is_valid() and save(),
or if a form defines a custom save().

• it must also be done in save to ensure the language is correctly enforced when in enforce mode.

This double check has no cost: unless the instance is changed by the view, the save() check will see the
translation is correct and do nothing.

save(self, commit=True)
Saves both the Shared Model and Translations Model and returns a combined model.

The target language is determined as follows:

• If a language is defined in cleaned_data, that language is used.

• Else, if the instance has a translation loaded, its language is used.

• Else, the current language is used.

Once the language is determined, the following happen:

• If the object does not exist, it is created.

• If the object exists but not in the target language, its shared fields are updated and a new translation is
created.

• If the object exists in the target language, it is updated.

Note: The enforce mode has no direct impact on this method. Rather, it affects the behavior of clean(),
which places relevant language (or lack thereof) in cleaned_data.

hvad.forms.translatable_modelform_factory(language, model,
form=TranslatableModelForm, **kwargs)

Attaches a language and a model class to the specified form and returns the resulting class. Additional arguments
are any arguments accepted by Django’s modelform_factory(), including fields and exclude.

Having a language attached, the returned form is in enforce mode.

hvad.forms.translatable_modelformset_factory(language, model,
form=TranslatableModelForm, **kwargs)

Creates a formset class, allowing edition a collection of instances of model, all of them in the specified
language. Additional arguments are any argument accepted by Django’s modelformset_factory().

Having a language attached, the returned formset is in enforce mode.

hvad.forms.translatable_inlineformset_factory(language, parent_model, model,
form=TranslatableModelForm,
**kwargs)

Creates an inline formset, allowing edition of a collection of instances of model attached to an instance of
parent_model, all of those objects being in the specified language. Additional arguments are any argu-
ment accepted by Django’s inlineformset_factory().

Having a language attached, the returned formset is in enforce mode.

46 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.modelform_factory
https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.modelformset_factory
https://django.readthedocs.io/en/latest/ref/forms/models.html#django.forms.models.inlineformset_factory

Django Hvad Documentation, Release 1.8.0

BaseTranslationFormSet

class hvad.forms.BaseTranslationFormSet(BaseInlineFormSet)

instance
An instance of a TranslatableModel that the formset works on the translations of. Its untranslatable
fields will be used while validating and saving the translations.

order_translations(self, qs)
Is given a queryset over the Translations Model, that it should alter and return. This is used for adding
order_by clause that will define the order in which languages will show up in the formset.

Default implementation orders by language_code. If overriding this method, the default implementation
should not be called.

clean(self)
Performs translation-specific cleaning of the form. Namely, it combines each form’s translation with
instance then calls full_clean() on the full object.

It also ensures the last translation of an object cannot be deleted (unless adding a new translation at the
same time).

_save_translation(self, form, commit=True)
Saves one of the formset’s forms to the database. It is used by both save_new() and
save_existing(). It works by combining the form’s translation with instance’s untranslatable
fields, then saving the whole object, triggering any custom save() method or related signal handlers.

save_new(self, form, commit=True)
Saves a new translation. Called from save().

save_existing(self, form, instance, commit=True)
Saves an existing, updated translation. Called from save().

add_fields(self, form, index)
Adds a language_code field if it is not defined on the translation form.

hvad.manager

This module is where most of the functionality is implemented.

hvad.manager.FALLBACK_LANGUAGES
The default sequence for fallback languages, populates itself from settings.LANGUAGES, could possibly
become a setting on it’s own at some point.

FieldTranslator

class hvad.manager.FieldTranslator
The cache mentioned in this class is the instance of the class itself, since it inherits dict.

Possibly this class is not feature complete since it does not care about multi-relation queries. It should probably
use hvad.fieldtranslator.translate() after the first level if it hits the Shared Model.z

get(self, key)
Returns the translated fieldname for key. If it’s already cached, return it from the cache, otherwise call
build()

3.12. Internal API Documentation 47

https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.full_clean
https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model.save

Django Hvad Documentation, Release 1.8.0

build(self, key)
Returns the key prefixed by 'master__' if it’s a shared field, otherwise returns the key unchanged.

ValuesMixin

class hvad.manager.ValuesMixin
A mixin class for ValuesQuerySet which implements the functionality needed by
TranslationQueryset.values() and TranslationQueryset.values_list().

_strip_master(self, key)
Strips 'master__' from the key if the key starts with that string.

iterator(self)
Iterates over the rows from the superclass iterator and calls _strip_master() on the key if the row is
a dictionary.

SkipMasterSelectMixin

class hvad.manager.SkipMasterSelectMixin
A mixin class for specialized querysets such as DateQuerySet and DateTimeQuerySet which forces
TranslationQueryset not to add the related lookup on the master field. This is required as those spe-
cialized querysets use DISTINCT, and added the related lookup brings along all fields on the Shared Model,
breaking the lookup.

TranslationQueryset

class hvad.manager.TranslationQueryset
Any method on this queryset that returns a model instance or a queryset of model instances actually returns a
Translations Model which gets combined to behave like a Shared Model. While this manager is on the Shared
Model, it is actually a manager for the Translations Model since the model gets switched when this queryset is
instantiated from the TranslationManager.

override_classes
A dictionary of django classes to hvad classes to mixin when _clone() is called with an explicit klass
argument.

_local_field_names
A list of field names on the Shared Model.

_field_translator
The cached field translator for this manager.

_language_code
The language code of this queryset, or one of the following special values:

• None: get_language() will be called to get the current language.

• 'all': no language filtering will be applied, a copy of an instance will be returned for every trans-
lation that matched the query.

_language_fallbacks
A tuple of fallbacks used for this queryset, if fallbacks have been activated by fallbacks(), or None
otherwise.

A None value in the tuple will be replaced with current language at query evaluation.

48 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language

Django Hvad Documentation, Release 1.8.0

_hvad_switch_fields
A tuple of attributes to move from the Translations Model to the Shared Model instance before returning
objects to the caller. It is mostly used by extra() so additional values collected by the select argument
are available on the final instance.

translations_manager
The (real) manager of the Translations Model.

shared_model
The Shared Model.

field_translator
The field translator for this manager, sets _field_translator if it’s None.

shared_local_field_names
Returns a list of field names on the Shared Model, sets _local_field_names if it’s None.

_translate_args_kwargs(self, *args, **kwargs)
Translates args (Q objects) and kwargs (dictionary of query lookups and values) to be language aware, by
prefixing fields on the Shared Model with 'master__'. Uses field_translator for the kwargs
and _recurse_q() for the args. Returns a tuple of translated args and translated kwargs.

_translate_fieldnames(self, fieldnames)
Translate a list of fieldnames by prefixing fields on the Shared Model with 'master__' using
field_translator. Returns a list of translated fieldnames.

_recurse_q(self, q)
Recursively walks a Q object and translates it’s query lookups to be prefixed by 'master__' if they
access a field on Shared Model.

Every Q object has an attribute children which is either a list of other Q objects or a tuple where the
key is the query lookup.

This method returns a new Q object.

_find_language_code(self, q)
Searches a Q object for language code lookups. If it finds a child Q object that defines a language code, it
returns that language code if it’s not None. Used in get() to ensure a language code is defined.

For more information about Q objects, see _recurse_q().

Returns the language code if one was found or None.

_split_kwargs(self, **kwargs)
Splits keyword arguments into two dictionaries holding the shared and translated fields.

Returns a tuple of dictionaries of shared and translated fields.

_get_class(self, klass)
Given a QuerySet class or subclass, it checks if the class is a subclass of any class in
override_classes and if so, returns a new class which mixes the initial class, the class from
override_classes and TranslationQueryset. Otherwise returns the class given.

_get_shared_queryset(self)
Returns a clone of this queryset but for the shared model. Does so by creating a QuerySet on
shared_model and filtering over this queryset. Returns a queryset for the Shared Model.

_add_language_filter(self)
Apply the language filter to current query. Language is retrieved from _language_code, or
get_language() if None. If fallbacks() have been set, apply the additional join as well.

3.12. Internal API Documentation 49

https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.extra
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language

Django Hvad Documentation, Release 1.8.0

Special value 'all'will prevent any language filter from being applied, resulting in the query considering
all translations, possibly returning the same instance mutiple times if several of its translations match. In
that case, each instance will be combined with one of the matching translations.

Applied filters include the base language filter on the language_code field, as well as any related model
translation set up by select_related().

_add_select_related(self, language_code)
New in version 0.5.

Applies the related selections to current query. This includes the basic selection of master, any rela-
tion specified through select_related() and the translations of any translatable models it navigates
through.

language(self, language_code=None)
Specifies a language for this queryset. This sets the _language_code, but no filter are actually applied
until _add_language_filter() is called. This allows for query-time resolution of the None value.
It is an error to call language() multiple times on the same queryset.

The following special values are accepted:

• None, or no value: get_language() will be called to get the current language.

• 'all': no language filtering will be applied, a copy of an instance will be returned for every trans-
lation that matched the query, each copy being combined with one of the matching translations.

Returns a queryset.

Note: Support for using language('all') and select_related() on the same queryset is
experimental. Please check the generated queries and open an issue if you have any problem. Feedback is
appreciated as well.

fallbacks(self, *languages)
New in version 0.6.

Activates fallbacks for this queryset. This sets the _language_fallbacks attribute, but does not apply
any join or filtering until _add_language_filter() is called. This allows for query-time resolution
of the None values in the list.

The following special cases are accepted:

• None as a single argument will disable fallbacks on the queryset.

• An empty argument list will use LANGUAGES setting as a fallback list.

• A None value a language will be replaced by the current language at query evalution time, by calling
get_language()

Returns a queryset.

Note: Using fallbacks and select_related() on the same queryset is not supported and will
raise a NotImplementedError.

Note: This feature requires Django 1.6 or newer.

50 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language
https://django.readthedocs.io/en/latest/ref/settings.html#std:setting-LANGUAGES
https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language
https://docs.python.org/2.7/library/exceptions.html#exceptions.NotImplementedError

Django Hvad Documentation, Release 1.8.0

create(self, **kwargs)
Creates a new instance using the kwargs given. If _language_code is not set and language_code is not
in kwargs, it uses get_language() to get the current language and injects that into kwargs.

This causes two queries as opposed to the one by the normal queryset.

Returns the newly created (combined) instance.

Note: It is an error to call create with no language_code on a queryset whose _language_code
is 'all'. Doing so will raise a ValueError.

bulk_create(self, objs, batch_size=None)
Not implemented yet and unlikely to be due to inherent limitations of multi-table inserts.

update_or_create(self, defaults=None, **kwargs)
Not implemented yet.

get(self, *args, **kwargs)
Gets a single instance from this queryset using the args and kwargs given. The args and kwargs are
translated using _translate_args_kwargs().

If a language code is given in the kwargs, it calls language() using the language code provided. If
none is given in kwargs, it uses _find_language_code() on the Q objects given in args. If no
args were given or they don’t contain a language code, it searches the django.db.models.sql.
where.WhereNode objects on the current queryset for language codes. If none was found, it will
use the language of this queryset from _language_code, or the current language as returned by
get_language() of that is None.

Returns a (combined) instance if one can be found for the filters given, otherwise raises an appropriate
exception depending on whether no or multiple objects were found.

Warning: It is an error to pass language_code in a Q object if a select_related() clause was
enabled on this queryset. Doing so will raise an AssertionError.

get_or_create(self, **kwargs)
Will try to fetch the translated instance for the kwargs given.

If it can’t find it, it will try to find a shared instance (using _splitkwargs()). If it finds a shared
instance, it will create the translated instance. If it does not find a shared instance, it will create both.

Returns a tuple of a (combined) instance and a boolean flag which is False if it found the instance or
True if it created either the translated or both instances.

filter(self, *args, **kwargs)
Translates args and kwargs using _translate_args_kwargs() and calls the superclass using the
new args and kwargs.

aggregate(self, *args, **kwargs)
Loops through the passed aggregates and translates the fieldnames using
_translate_fieldnames() and calls the superclass

latest(self, field_name=None)
Translates the fieldname (if given) using field_translator and calls the superclass.

earliest(self, field_name=None)
New in version 0.4.

Translates the fieldname (if given) using field_translator and calls the superclass.

3.12. Internal API Documentation 51

https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language
https://docs.python.org/2.7/library/exceptions.html#exceptions.ValueError
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language
https://docs.python.org/2.7/library/exceptions.html#exceptions.AssertionError

Django Hvad Documentation, Release 1.8.0

Only defined if django version is 1.6 or newer.

in_bulk(self, id_list)
New in version 0.4.

Retrieves the objects, building a dict from iterator().

delete(self)
Deletes the Shared Model using _get_shared_queryset().

delete_translations(self)
Deletes the translations (and only the translations) by first breaking their relation to the Shared Model and
then calling the delete method on the superclass. This uses two queries.

update(self, **kwargs)
Updates this queryset using kwargs. Calls _split_kwargs() to get two dictionaries holding only the
shared or translated fields respectively. If translated fields are given, calls the superclass with the translated
fields. If shared fields are given, uses _get_shared_queryset() to update the shared fields.

If both shared and translated fields are updated, two queries are executed, if only one of the two are given,
one query is executed.

Returns the count of updated objects, which if both translated and shared fields are given is the sum of the
two update calls.

values(self, *fields)
Translates fields using _translate_fieldnames() and calls the superclass.

values_list(self, *fields, **kwargs)
Translates fields using _translate_fieldnames() and calls the superclass.

dates(self, field_name, kind, order=’ASC’)
Translates fields using _translate_fieldnames() and calls the superclass.

datetimes(self, field_name, *args, **kwargs)
Translates fields using _translate_fieldnames() and calls the superclass.

Only defined if django version is 1.6 or newer.

exclude(self, *args, **kwargs)
Works like filter().

complex_filter(self, filter_obj)
Not really implemented yet, but if filter_obj is an empty dictionary it just returns this queryset, since this
is required to get admin to work.

annotate(self, *args, **kwargs)
Not implemented yet.

order_by(self, *field_names)
Translates fields using _translate_fieldnames() and calls the superclass.

reverse(self)
Calls the superclass.

defer(self, *fields)
Not implemented yet.

only(self, *fields)
Not implemented yet.

_clone(self, klass=None, setup=False, **kwargs)
Injects _local_field_names, _field_translator, _language_code, and shared_model into kwargs. If a klass
is given, calls _get_class() to get a mixed class if necessary.

52 Chapter 3. Contents

Django Hvad Documentation, Release 1.8.0

Calls the superclass with the new kwargs and klass.

iterator(self)
Iterates using the iterator from the superclass, if the objects yielded have a master, it yields a combined
instance, otherwise the instance itself to enable non-cascading deletion.

Interestingly, implementing the combination here also works for get() and __getitem__(). This is
because the former uses the latter, which in turn fetches results from an iterator.

TranslationManager

class hvad.manager.TranslationManager
Manager to be used on hvad.models.TranslatableModel.

translations_model
The Translations Model for this manager.

queryset_class
The QuerySet for this manager, used by the language() method. Overwrite to use a cus-
tom queryset. Your custom queryset class must inherit TranslationQueryset. Defaults to
TranslationQueryset.

fallback_class
The QuerySet for this manager, used by the untranslated() method. Overwrite to use a custom
queryset. Defaults to FallbackQueryset.

default_class
The QuerySet for this manager, used by the get_queryset()method and generally any query that does
not invoke either language() or untranslated(). Overwrite to use a custom queryset. Defaults to
QuerySet.

language(self, language_code=None)
Instanciates a TranslationQueryset from queryset_class and calls
TranslationQueryset.language() on that queryset. This type of queryset will filter by
language, returning only objects that have a translation in the specified language. Translated fields will be
available on the objects, in the specified language.

untranslated(self)
Returns an instance of FallbackQueryset for this manager, or any custom queryset defined by
fallback_class. This type of queryset will load translations using fallbacks if current language is
not available. It can generate a lot a queries, use with caution.

get_queryset(self)
Returns a vanilla, non-translating queryset for this manager. It uses the default QuerySet or any custom
queryset defined by default_class.

Instances returned will not have translated fields, and attempts to access them will result in an exception
being raised. See language() and untranslated() to access translated fields.

It is possible to override this behavior by setting default_class to TranslationQueryset,
FallbackQueryset or any queryset that has a translation-aware implementation.

contribute_to_class(self, model, name)
Contributes this manager onto the class.

3.12. Internal API Documentation 53

https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet

Django Hvad Documentation, Release 1.8.0

FallbackQueryset

class hvad.manager.FallbackQueryset
Deprecated since version 1.4.

A queryset that can optionally use fallbacks and by default only fetches the Shared Model.

There are actually two underlying implementations, the LegacyFallbackQueryset and
the SelfJoinFallbackQueryset. Implementation is chosen at initialization based on the
HVAD_LEGACY_FALLBACKS setting. It defaults to False (use SelfJoin) on Django 1.6 and newer,
and True (use Legacy) on older versions.

The LegacyFallbackQueryset generates lots of queries as it walks through batches of models, fetches
their translations and matches them onto the models.

The SelfJoinFallbackQueryset uses a single self outer join to achieve the same result in only one
(complex) query. Performance is good as the number of items per model in the cross-product is limited to the
number of languages that Django supports. Implementation digs deeper into Django internals, though.

_translation_fallbacks
List of fallbacks to use (or None).

iterator(self)
If _translation_fallbacks is set, it iterates using the superclass and tries to get the translation
using the order of language codes defined in _translation_fallbacks. As soon as it finds a trans-
lation for an object, it yields a combined object using that translation. Otherwise yields an uncombined
object. Due to the way this works, it can cause a lot of queries and this should be improved if possible.

If no fallbacks are given, it just iterates using the superclass.

use_fallbacks(self, *fallbacks)
Deprecated since version 1.4.

If this method gets called, iterator() will use the fallbacks defined here. None value will be replaced
with current language at query evaluation, as returned by get_language(). If not fallbacks are given,
FALLBACK_LANGUAGES will be used, with current language prepended.

This method has been superseded by fallbacks() and will be removed when support for Django 1.4
is dropped.

_clone(self, klass=None, setup=False, **kwargs)
Injects translation_fallbacks into kwargs and calls the superclass.

TranslationAwareQueryset

class hvad.manager.TranslationAwareQueryset

_language_code
The language code of this queryset.

_translate_args_kwargs(self, *args, **kwargs)
Calls language() using _language_code as an argument.

Translates args and kwargs into translation aware args and kwargs using hvad.fieldtranslator.
translate() by iterating over the kwargs dictionary and translating it’s keys and recursing over the Q
objects in args using _recurse_q().

Returns a triple of newargs, newkwargs and extra_filters where newargs and newkwargs are the translated
versions of args and kwargs and extra_filters is a Q object to use to filter for the current language.

54 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q

Django Hvad Documentation, Release 1.8.0

_recurse_q(self, q)
Recursively translate the keys in the Q object given using hvad.fieldtranslator.translate().
For more information about Q, see TranslationQueryset._recurse_q().

Returns a tuple of q and language_joins where q is the translated Q object and language_joins is a list of
extra language join filters to be applied using the current language.

_translate_fieldnames(self, fields)
Calls language() using _language_code as an argument.

Translates the fieldnames given using hvad.fieldtranslator.translate()

Returns a tuple of newfields and extra_filters where newfields is a list of translated fieldnames and ex-
tra_filters is a Q object to be used to filter for language joins.

language(self, language_code=None)
Sets the _language_code attribute either to the language given with language_code or by getting
the current language from get_language(). Unlike TranslationQueryset.language(), this
does not actually filter by the language yet as this happens in _filter_extra().

get(self, *args, **kwargs)
Gets a single object from this queryset by filtering by args and kwargs, which are first translated us-
ing _translate_args_kwargs(). Calls _filter_extra() with the extra_filters returned by
_translate_args_kwargs() to get a queryset from the superclass and to call that queryset.

Returns an instance of the model of this queryset or raises an appropriate exception when none or multiple
objects were found.

filter(self, *args, **kwargs)
Filters the queryset by args and kwargs by translating them using _translate_args_kwargs() and
calling _filter_extra() with the extra_filters returned by _translate_args_kwargs().

aggregate(self, *args, **kwargs)
Not implemented yet.

latest(self, field_name=None)
If a fieldname is given, uses hvad.fieldtranslator.translate() to translate that field-
name. Calls _filter_extra() with the extra_filters returned by hvad.fieldtranslator.
translate() if it was used, otherwise with an empty Q object.

in_bulk(self, id_list)
Not implemented yet

values(self, *fields)
Calls _translate_fieldnames() to translated the fields. Then calls _filter_extra() with the
extra_filters returned by _translate_fieldnames().

values_list(self, *fields, **kwargs)
Calls _translate_fieldnames() to translated the fields. Then calls _filter_extra() with the
extra_filters returned by _translate_fieldnames().

dates(self, field_name, kind, order=’ASC’)
Not implemented yet.

exclude(self, *args, **kwargs)
Not implemented yet.

complex_filter(self, filter_obj)
Not really implemented yet, but if filter_obj is an empty dictionary it just returns this queryset, to make
admin work.

3.12. Internal API Documentation 55

https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q

Django Hvad Documentation, Release 1.8.0

annotate(self, *args, **kwargs)
Not implemented yet.

order_by(self, *field_names)
Calls _translate_fieldnames() to translated the fields. Then calls _filter_extra() with the
extra_filters returned by _translate_fieldnames().

reverse(self)
Not implemented yet.

defer(self, *fields)
Not implemented yet.

only(self, *fields)
Not implemented yet.

_clone(self, klass=None, setup=False, **kwargs)
Injects _language_code into kwargs and calls the superclass.

_filter_extra(self, extra_filters)
Filters this queryset by the Q object provided in extra_filters and returns a queryset from the superclass, so
that the methods that call this method can directely access methods on the superclass to reduce boilerplate
code.

Warning: This internal method returns a super() proxy object, be sure to understand the implica-
tions before using it.

TranslationAwareManager

class hvad.manager.TranslationAwareManager

get_queryset(self)
Returns an instance of TranslationAwareQueryset.

hvad.models

hvad.models.create_translations_model(model, related_name, meta, **fields)
A model factory used to create the Translations Model. Makes sure that the unique_together option on the
options (meta) contain ('language_code', 'master') as they always have to be unique together. Sets
the master foreign key to model onto the Translations Model as well as the language_code field, which is
a database indexed char field with a maximum of 15 characters.

Returns the new model.

hvad.models.contribute_translations(cls, rel)
Gets called from prepare_translatable_model() to set the descriptors of the fields on the Translations
Model onto the model.

hvad.models.prepare_translatable_model(sender)
Gets called from Model’s metaclass to customize model creation. Performs checks, then contributes transla-
tions and translation manager onto models that inherit TranslatableModel.

56 Chapter 3. Contents

https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.Q
https://django.readthedocs.io/en/latest/ref/models/instances.html#django.db.models.Model

Django Hvad Documentation, Release 1.8.0

TranslatedFields

class hvad.models.TranslatedFields
A wrapper for the translated fields which is set onto TranslatableModel subclasses to define what fields
are translated.

Internally this is just used because Django calls the contribute_to_class() method on all attributes of
a model, if such a method is available.

contribute_to_class(self, cls, name)
Calls create_translations_model().

BaseTranslationModel

class hvad.models.BaseTranslationModel
A baseclass for the models created by create_translations_model() to distinguish Translations
Model classes from other models. This model class is abstract.

TranslatableModel

class hvad.models.TranslatableModel
A model which has translated fields on it. Must define one and exactly one attribute which is an instance of
TranslatedFields. This model is abstract.

If initalized with data, it splits the shared and translated fields and prepopulates both the Shared Model and
the Translations Model. If no language_code is given, get_language() is used to get the language for the
Translations Model instance that gets initialized.

Note: When initializing a TranslatableModel, positional arguments are only supported for the shared
fields.

objects
An instance of hvad.manager.TranslationManager.

_shared_field_names
A list of field on the Shared Model.

_translated_field_names
A list of field on the Translations Model.

classmethod save_translations(cls, instance, **kwargs)
This classmethod is connected to the model’s post save signal from
prepare_translatable_model() and saves the cached translation if it’s available.

translate(self, language_code)
Initializes a new instance of the Translations Model (does not check the database if one for the language
given already exists) and sets it as cached translation. Used by end users to translate instances of a model.

safe_translation_getter(self, name, default=None)
Helper method to safely get a field from the Translations Model.

lazy_translation_getter(self, name, default=None)
Helper method to get the cached translation, and in the case the cache for some reason doesnt exist, it gets
it from the database.

3.12. Internal API Documentation 57

https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language

Django Hvad Documentation, Release 1.8.0

get_available_languages(self)
Returns a list of language codes in which this instance is available.

Extra information on _meta of Shared Models

The options (meta) on TranslatableModel subclasses have a few extra attributes holding information about the
translations.

translations_accessor

The name of the attribute that holds the TranslatedFields instance.

translations_model

The model class that holds the translations (Translations Model).

translations_cache

The name of the cache attribute on this model.

Extra information on _meta of Translations Models

The options (meta) on BaseTranslationModel subclasses have a few extra attributes holding information about
the translations.

shared_model

The model class that holds the shared fields (Shared Model).

hvad.query

This modules containts abstractions for accessing some internal parts of Django ORM that are used in hvad. The intent
is that anytime some code in hvad needs to access some Django internals, it should do so through a function in this
module.

hvad.query.query_terms(model, path)
This iterator yields all terms in the specified path, along with full introspection data. Each term is output as a
named tuple with the following members:

• depth: how deep in the path is this term. Counted from zero.

• term: the term string.

• model: `` the model the term is attached to. It will start with
passed ``model then walk through relations as terms are enumerated.

• field: the actual field, on the model, the term refers to.

• translated: whether the field is a translated field (True) or a shared fielf (False).

• target: the target model of the relation, or None if not a relational field.

58 Chapter 3. Contents

Django Hvad Documentation, Release 1.8.0

• many: whether the target can be multiple (that is, it is a M2M or reverse FK).

If a field is not recognized, it is assumed the path is complete and everything that follows is a query expression
(such as __year__in). Query expression terms will be yielded with field set to None.

hvad.query.q_children(q)
Iterator that recursively yields all key-value pairs of a Q object. Each pair is yielded as a 3-tuple: the pair itself,
its container and its index in the container. This allows modifying it.

hvad.query.expression_nodes(expression)
Iterator that recursively yields all nodes in an expression tree.

hvad.query.where_node_children(node)
Iterator that recursively yields all fields of a where node. It is used to determine whether a custom Q object
included a language_code filter.

hvad.utils

hvad.utils.get_cached_translation(instance)
Returns the cached translation from an instance or None. Encapsulates a getattr() using the model’s
translations_cache.

hvad.utils.set_cached_translation(instance, translation)
Sets the currently cached translation for the instance, and returns the translation that was loaded before the call.
Passing None as translation will unload current translation and let the instance untranslated.

hvad.utils.combine(trans, klass)
Combines a Shared Model with a Translations Model by taking the Translations Model and setting it onto the
Shared Model’s translations cache.

klass is the Shared Model class. This argument is required as there is no way to distinguish a translation of a
proxy model from that of a concrete model otherwise.

This function is only intended for loading models from the database. For other uses,
set_cached_translation() should be used instead.

hvad.utils.get_translation(instance, language_code=None)
Returns the translation for an instance, in the specified language. If given language is None, uses
get_language() to get current language.

Encapsulates a getattr() using the model’s translations_accessor and a call to its get() method using
the instance’s primary key and given language_code as filters.

hvad.utils.load_translation(instance, language, enforce=False)
Returns the translation for an instance.

• If enforce is False, then language is used as a default language, if the instance has no language
currently loaded.

• If enforce is True, then language will be enforced upon the translation, ignoring cached translation
if it is not in the given language.

A valid translation instance is always returned. It will be loaded from the database as required. If this fails, a
new, empty, ready-to-use translation will be returned.

The instance itself is untouched.

hvad.utils.get_translation_aware_manager(model)
Returns a manager for a normal model that is aware of translations and can filter over translated fields on
translated models related to this normal model.

3.12. Internal API Documentation 59

https://docs.python.org/2.7/library/functions.html#getattr
https://django.readthedocs.io/en/latest/ref/utils.html#django.utils.translation.get_language
https://docs.python.org/2.7/library/functions.html#getattr
https://django.readthedocs.io/en/latest/ref/models/querysets.html#django.db.models.query.QuerySet.get

Django Hvad Documentation, Release 1.8.0

class hvad.utils.SmartGetFieldByName
Smart version of the standard get_field_by_name() on the options (meta) of Django models that raises a
more useful exception when one tries to access translated fields with the wrong manager.

This descriptor is pending deprecation as the associated method is being removed from Django.

__init__(self, real)
Retains a reference to the actual method this descriptor is replacing.

__call__(self, meta, name)
Catches improper use of the get_field_by_name method to access translated fields and raise a
WrongManager exception.

class hvad.utils.SmartGetField
Smart version of the standard get_field() on the options (meta) of Django models that raises a more useful
exception when one tries to access translated fields with the wrong manager.

__init__(self, real)
Retains a reference to the actual method this descriptor is replacing.

__call__(self, meta, name)
Catches improper use of the get_field method to access translated fields and raise a WrongManager
exception.

class hvad.utils._MinimumDjangoVersionDescriptor
Helper class used by minimumDjangoVersion() decorator.

hvad.utils.minimumDjangoVersion(*args)
Decorator that will catch attempts to use methods on a Django version that does not support them and raise a
helpful exception.

Arguments must be the minimum allowable Django version, the will be compared against the django.
VERSION tuple.

settings_updater(func):
Decorator for setting globals depending on Django settings. It simply invokes the decorated function immedi-
ately, then calls it again every time the setting_changed signal is sent by Django.

3.13 Glossary

Normal Model A Django model that does not have Translated Fields.

Shared Fields A field which is not translated, thus shared between the languages.

Shared Model The part of your model which holds the untranslated fields. Internally this is a separated model to
your Translations Model as well as it’s own database table.

Translated Fields A field which is translatable on a model.

Translated Model A Django model that subclasses TranslatableModel.

Translation Manager A subclass of TranslationManager, which replaces the default Django manager on
Translated Model, allowing access to translated fields. It will use TranslationQueryset internally, or
a custom subclass if so configured.

Translation-Aware Manager A Django manager that operates on untranslated models, yet is aware of translated
models it meets when crossing relations. It makes it possible to filter untranslatable models against a translated
field of a related model.

Translations Model The part of your model which holds the translated fields. Internally this is a (autogenerated)
separate model with a ForeignKey to your Shared Model.

60 Chapter 3. Contents

Django Hvad Documentation, Release 1.8.0

3.14 Indices and tables

• genindex

• modindex

• search

• Glossary

3.14. Indices and tables 61

Django Hvad Documentation, Release 1.8.0

62 Chapter 3. Contents

Python Module Index

h
hvad.admin, 41
hvad.descriptors, 43
hvad.exceptions, 44
hvad.fieldtranslator, 44
hvad.forms, 44
hvad.manager, 47
hvad.models, 56
hvad.query, 58
hvad.utils, 59

63

Django Hvad Documentation, Release 1.8.0

64 Python Module Index

Index

Symbols
_MinimumDjangoVersionDescriptor (class in hvad.utils),

60
__call__() (hvad.utils.SmartGetField method), 60
__call__() (hvad.utils.SmartGetFieldByName method),

60
__delete__() (hvad.descriptors.LanguageCodeAttribute

method), 43
__delete__() (hvad.descriptors.TranslatedAttribute

method), 43
__get__() (hvad.descriptors.TranslatedAttribute method),

43
__init__() (hvad.forms.TranslatableModelForm method),

45
__init__() (hvad.utils.SmartGetField method), 60
__init__() (hvad.utils.SmartGetFieldByName method),

60
__metaclass__ (hvad.forms.TranslatableModelForm at-

tribute), 45
__new__() (hvad.forms.TranslatableModelFormMetaclass

method), 44
__set__() (hvad.descriptors.LanguageCodeAttribute

method), 43
__set__() (hvad.descriptors.TranslatedAttribute method),

43
_add_language_filter() (hvad.manager.TranslationQueryset

method), 49
_add_select_related() (hvad.manager.TranslationQueryset

method), 50
_build_model_info() (in module hvad.fieldtranslator), 44
_clone() (hvad.manager.FallbackQueryset method), 54
_clone() (hvad.manager.TranslationAwareQueryset

method), 56
_clone() (hvad.manager.TranslationQueryset method), 52
_field_translator (hvad.manager.TranslationQueryset at-

tribute), 48
_filter_extra() (hvad.manager.TranslationAwareQueryset

method), 56
_find_language_code() (hvad.manager.TranslationQueryset

method), 49
_get_class() (hvad.manager.TranslationQueryset

method), 49
_get_model_from_field() (in module

hvad.fieldtranslator), 44
_get_shared_queryset() (hvad.manager.TranslationQueryset

method), 49
_hvad_switch_fields (hvad.manager.TranslationQueryset

attribute), 48
_language() (hvad.admin.TranslatableAdmin method), 42
_language_code (hvad.manager.TranslationAwareQueryset

attribute), 54
_language_code (hvad.manager.TranslationQueryset at-

tribute), 48
_language_fallbacks (hvad.manager.TranslationQueryset

attribute), 48
_local_field_names (hvad.manager.TranslationQueryset

attribute), 48
_post_clean() (hvad.forms.TranslatableModelForm

method), 45
_recurse_q() (hvad.manager.TranslationAwareQueryset

method), 54
_recurse_q() (hvad.manager.TranslationQueryset

method), 49
_save_translation() (hvad.forms.BaseTranslationFormSet

method), 47
_shared_field_names (hvad.models.TranslatableModel

attribute), 57
_split_kwargs() (hvad.manager.TranslationQueryset

method), 49
_strip_master() (hvad.manager.ValuesMixin method), 48
_translate_args_kwargs()

(hvad.manager.TranslationAwareQueryset
method), 54

_translate_args_kwargs()
(hvad.manager.TranslationQueryset method),
49

_translate_fieldnames() (hvad.manager.TranslationAwareQueryset
method), 55

_translate_fieldnames() (hvad.manager.TranslationQueryset

65

Django Hvad Documentation, Release 1.8.0

method), 49
_translated_field_names (hvad.models.TranslatableModel

attribute), 57
_translation_fallbacks (hvad.manager.FallbackQueryset

attribute), 54

A
add_fields() (hvad.forms.BaseTranslationFormSet

method), 47
aggregate() (hvad.manager.TranslationAwareQueryset

method), 55
aggregate() (hvad.manager.TranslationQueryset method),

51
all_translations(), 20
all_translations() (hvad.admin.TranslatableAdmin

method), 42
annotate() (hvad.manager.TranslationAwareQueryset

method), 55
annotate() (hvad.manager.TranslationQueryset method),

52

B
BaseDescriptor (class in hvad.descriptors), 43
BaseTranslatableModelForm (class in hvad.forms), 45
BaseTranslationFormSet (class in hvad.forms), 47
BaseTranslationModel (class in hvad.models), 57
build() (hvad.manager.FieldTranslator method), 47
bulk_create() (hvad.manager.TranslationQueryset

method), 51

C
change_form_template (hvad.admin.TranslatableAdmin

attribute), 42
clean() (hvad.forms.BaseTranslationFormSet method), 47
clean() (hvad.forms.TranslatableModelForm method), 45
combine() (in module hvad.utils), 59
complex_filter() (hvad.manager.TranslationAwareQueryset

method), 55
complex_filter() (hvad.manager.TranslationQueryset

method), 52
contribute_to_class() (hvad.manager.TranslationManager

method), 53
contribute_to_class() (hvad.models.TranslatedFields

method), 57
contribute_translations() (in module hvad.models), 56
create() (hvad.manager.TranslationQueryset method), 50
create_translations_model() (in module hvad.models), 56

D
dates() (hvad.manager.TranslationAwareQueryset

method), 55
dates() (hvad.manager.TranslationQueryset method), 52
datetimes() (hvad.manager.TranslationQueryset method),

52

default_class (hvad.manager.TranslationManager at-
tribute), 53

defer() (hvad.manager.TranslationAwareQueryset
method), 56

defer() (hvad.manager.TranslationQueryset method), 52
delete() (hvad.manager.TranslationQueryset method), 52
delete_translations(), 14
delete_translations() (hvad.manager.TranslationQueryset

method), 52

E
earliest() (hvad.manager.TranslationQueryset method),

51
exclude() (hvad.manager.TranslationAwareQueryset

method), 55
exclude() (hvad.manager.TranslationQueryset method),

52
expression_nodes() (in module hvad.query), 59

F
fallback_class (hvad.manager.TranslationManager

attribute), 53
FALLBACK_LANGUAGES (in module hvad.manager),

47
FallbackQueryset (class in hvad.manager), 54
fallbacks(), 14
fallbacks() (hvad.manager.TranslationQueryset method),

50
field_translator (hvad.manager.TranslationQueryset at-

tribute), 49
FieldTranslator (class in hvad.manager), 47
filter() (hvad.manager.TranslationAwareQueryset

method), 55
filter() (hvad.manager.TranslationQueryset method), 51
form (hvad.admin.TranslatableAdmin attribute), 42

G
get() (hvad.manager.FieldTranslator method), 47
get() (hvad.manager.TranslationAwareQueryset method),

55
get() (hvad.manager.TranslationQueryset method), 51
get_available_languages(), 10
get_available_languages()

(hvad.models.TranslatableModel method),
57

get_cached_translation() (in module hvad.utils), 59
get_change_form_base_template()

(hvad.admin.TranslatableAdmin method),
42

get_form() (hvad.admin.TranslatableAdmin method), 42
get_language_tabs() (hvad.admin.TranslatableAdmin

method), 42
get_model_info() (in module hvad.fieldtranslator), 44

66 Index

Django Hvad Documentation, Release 1.8.0

get_or_create() (hvad.manager.TranslationQueryset
method), 51

get_queryset() (hvad.manager.TranslationAwareManager
method), 56

get_queryset() (hvad.manager.TranslationManager
method), 53

get_translation() (in module hvad.utils), 59
get_translation_aware_manager() (in module hvad.utils),

59

H
hvad.admin (module), 41
hvad.descriptors (module), 43
hvad.exceptions (module), 44
hvad.fieldtranslator (module), 44
hvad.forms (module), 44
hvad.manager (module), 47
hvad.models (module), 56
hvad.query (module), 58
hvad.utils (module), 59

I
in_bulk() (hvad.manager.TranslationAwareQueryset

method), 55
in_bulk() (hvad.manager.TranslationQueryset method),

52
instance (hvad.forms.BaseTranslationFormSet attribute),

47
iterator() (hvad.manager.FallbackQueryset method), 54
iterator() (hvad.manager.TranslationQueryset method),

53
iterator() (hvad.manager.ValuesMixin method), 48

L
language (hvad.forms.TranslatableModelForm attribute),

45
language(), 13
language() (hvad.manager.TranslationAwareQueryset

method), 55
language() (hvad.manager.TranslationManager method),

53
language() (hvad.manager.TranslationQueryset method),

50
LanguageCodeAttribute (class in hvad.descriptors), 43
latest() (hvad.manager.TranslationAwareQueryset

method), 55
latest() (hvad.manager.TranslationQueryset method), 51
lazy_translation_getter(), 9
lazy_translation_getter() (hvad.models.TranslatableModel

method), 57
load_translation() (in module hvad.utils), 59

M
minimumDjangoVersion() (in module hvad.utils), 60

MODEL_INFO (in module hvad.fieldtranslator), 44

N
name (hvad.descriptors.TranslatedAttribute attribute), 43
NORMAL (in module hvad.fieldtranslator), 44
Normal Model, 60

O
objects (hvad.models.TranslatableModel attribute), 57
only() (hvad.manager.TranslationAwareQueryset

method), 56
only() (hvad.manager.TranslationQueryset method), 52
opts (hvad.descriptors.BaseDescriptor attribute), 43
opts (hvad.descriptors.TranslatedAttribute attribute), 43
order_by() (hvad.manager.TranslationAwareQueryset

method), 56
order_by() (hvad.manager.TranslationQueryset method),

52
order_translations() (hvad.forms.BaseTranslationFormSet

method), 47
override_classes (hvad.manager.TranslationQueryset at-

tribute), 48

P
prepare_translatable_model() (in module hvad.models),

56
Python Enhancement Proposals

PEP 8, 40

Q
q_children() (in module hvad.query), 59
query_language_key (hvad.admin.TranslatableAdmin at-

tribute), 42
query_terms() (in module hvad.query), 58
queryset() (hvad.admin.TranslatableAdmin method), 42
queryset_class (hvad.manager.TranslationManager

attribute), 53

R
render_change_form() (hvad.admin.TranslatableAdmin

method), 42
reverse() (hvad.manager.TranslationAwareQueryset

method), 56
reverse() (hvad.manager.TranslationQueryset method), 52

S
safe_translation_getter(), 9
safe_translation_getter() (hvad.models.TranslatableModel

method), 57
save(), 10
save() (hvad.forms.TranslatableModelForm method), 46
save_existing() (hvad.forms.BaseTranslationFormSet

method), 47

Index 67

Django Hvad Documentation, Release 1.8.0

save_new() (hvad.forms.BaseTranslationFormSet
method), 47

save_translations() (hvad.models.TranslatableModel
class method), 57

select_related(), 15
set_cached_translation() (in module hvad.utils), 59
Shared Fields, 60
Shared Model, 60
shared_local_field_names

(hvad.manager.TranslationQueryset attribute),
49

shared_model (hvad.manager.TranslationQueryset
attribute), 49

SkipMasterSelectMixin (class in hvad.manager), 48
SmartGetField (class in hvad.utils), 60
SmartGetFieldByName (class in hvad.utils), 59

T
translatable_inlineformset_factory() (in module

hvad.forms), 46
translatable_modelform_factory() (in module

hvad.admin), 41
translatable_modelform_factory() (in module

hvad.forms), 46
translatable_modelformset_factory() (in module

hvad.forms), 46
TranslatableAdmin (class in hvad.admin), 42
TranslatableModel (class in hvad.models), 57
TranslatableModelForm (class in hvad.forms), 45
TranslatableModelFormMetaclass (class in hvad.forms),

44
translate(), 9
translate() (hvad.models.TranslatableModel method), 57
translate() (in module hvad.fieldtranslator), 44
TRANSLATED (in module hvad.fieldtranslator), 44
Translated Fields, 60
Translated Model, 60
TranslatedAttribute (class in hvad.descriptors), 43
TranslatedFields (class in hvad.models), 57
Translation Manager, 60
translation() (hvad.descriptors.BaseDescriptor method),

43
Translation-Aware Manager, 60
TranslationAwareManager (class in hvad.manager), 56
TranslationAwareQueryset (class in hvad.manager), 54
TranslationManager (class in hvad.manager), 53
TranslationQueryset (class in hvad.manager), 48
TRANSLATIONS (in module hvad.fieldtranslator), 44
Translations Model, 60
translations_manager (hvad.manager.TranslationQueryset

attribute), 49
translations_model (hvad.manager.TranslationManager

attribute), 53

U
untranslated() (hvad.manager.TranslationManager

method), 53
update() (hvad.manager.TranslationQueryset method), 52
update_or_create() (hvad.manager.TranslationQueryset

method), 51
use_fallbacks(), 16
use_fallbacks() (hvad.manager.FallbackQueryset

method), 54

V
values() (hvad.manager.TranslationAwareQueryset

method), 55
values() (hvad.manager.TranslationQueryset method), 52
values_list() (hvad.manager.TranslationAwareQueryset

method), 55
values_list() (hvad.manager.TranslationQueryset

method), 52
ValuesMixin (class in hvad.manager), 48

W
where_node_children() (in module hvad.query), 59
WrongManager, 44

68 Index

	About this project
	Notes on Django versions
	Contents
	Installation
	Requirements
	Installation

	Quickstart
	Define a multilingual model
	Create a translated instance
	Querying translatable models

	Models
	Defining models
	New and Changed Methods
	Working with relations
	Advanced Model Definitions
	Custom Managers and Querysets

	Queryset API
	TranslationQueryset
	FallbackQueryset

	Forms
	TranslatableModelForm
	TranslatableModelForm factory
	TranslatableModel Formset
	TranslatableModel Inline Formset
	Translations Formset

	Admin
	New methods
	ModelAdmin APIs you should not change on TranslatableAdmin
	Forms in admin
	ModelAdmin APIs not available on TranslatableAdmin

	REST Framework
	TranslatableModelSerializer
	HyperlinkedTranslatableModelSerializer
	TranslationsMixin

	Frequent Questions
	Why “django-hvad”?
	How do I get the right language from the request?
	How about multilingual URI?
	How do I use hvad with MPTT?
	How do I separate translatable fields in admin?

	Release Notes
	1.8.0 - current release
	1.7.0
	1.6.0
	1.5.1
	1.5.0
	1.4.0
	1.3.0
	1.2.2
	1.2.1
	1.2.0
	1.1.1
	1.1.0
	1.0.0
	0.5.2
	0.5.1
	0.5.0
	0.4.1
	0.4.0
	0.3
	0.2
	0.1.4 (Alpha)
	0.1.3 (Alpha)
	0.0.4 (Alpha)
	0.0.3 (Alpha)
	0.0.2 (Alpha)
	0.0.1 (Alpha)

	Contact and support channels
	How to contribute
	Running the tests
	Contributing Code
	Contributing Documentation

	Internal API Documentation
	About this part of the documentation
	Contents

	Glossary
	Indices and tables

	Python Module Index

